9,675 research outputs found

    Interface trap generation by FN injection under dynamic oxide field stress

    Get PDF
    Interface trap generation under dynamic (bipolar and unipolar) and dc oxide field stress has been investigated with the charge pumping technique. It is observed that regardless of stress type, whether dc or dynamic (bipolar or unipolar), and the polarity of stress voltage, interface trap generation starts to occur at the voltage at which Fowler-Nordheim (FN) tunneling through the oxide starts to build up. For positive voltage, interface trap generation is attributed to the recombination of trapped holes with electrons and to the bond breaking by the hydrogen (H and H+) released during stressing. For negative voltage, in addition to these two mechanisms, the bond breaking by energetic electrons may also contribute to interface trap generation. The frequency dependence of interface trap generation is also investigated. Interface trap generation is independent of stressing frequency for unipolar stress but it shows a frequency dependence for bipolar stress. ©1998 IEEE.published_or_final_versio

    Characterization of Pt-Si interface by spectroscopic ellipsometry

    Get PDF
    Spectroscopic ellipsometric measurements for Pt/n-Si samples with different thickness of Pt films have been performed. The thickness of the Pt films determined with the three-phase model (air/Pt/Si) changes with the wavelength λ while that with the four-phase model (air/Pt/interface layer/Si) remains unchanged, showing the existence of an interface layer. At the same time, the apparent optical dielectric constants of the interface layer as a function of λ are also obtained. A calculation based on the effective medium theory is carried out to simulate the optical dielectric data of the interface layer. Some structural information of the interface layer is obtained from the calculation. © 1994 American Institute of Physics.published_or_final_versio

    In Situ Structure Characterization in Slot-Die-Printed All-Polymer Solar Cells with Efficiency Over 9%

    Get PDF
    Herein, high-performance printed all-polymer solar cells (all-PSCs) based on a bulk-heterojunction (BHJ) blend film are demonstrated using PTzBI as the donor and N2200 as the acceptor. A slot-die process is used to prepare the BHJ blend, which is a cost-effective, high-throughput approach to achieve large-area photovoltaic devices. The real-time crystallization of polymers in the film drying process is investigated by in situ grazing incidence wide-angle X-ray scattering characterization. Printing is found to significantly improve the crystallinity of the polymer blend in comparison with spin coating. Moreover, printing with 1,8-diiodooctane as the solvent additive enhances the polymer aggregation and crystallization during solvent evaporation, eventually leading to multi-length-scale phase separation, with PTzBI-rich domains in-between the N2200 crystalline fibers. This unique morphology achieved by printing fabrication results in an impressively high power conversion efficiency of 9.10%, which is the highest efficiency reported for printed all-PSCs. These findings provide important guidelines for controlling film drying dynamics for processing all-PSCs

    Two-terminal write-once-read-many-times memory device based on charging-controlled current modulation in Al/Al-Rich Al 2O 3/p-Si diode

    Get PDF
    A write-once-read-many-times (WORM) memory device was realized based on the charging-controlled modulation in the current conduction of Al/Al-rich Al 2O 3/p-type Si diode. A large increase in the reverse current of the diode could be achieved with a negative charging voltage, e.g., charging at -25 V for 1 ms results in a current increase by about four orders. Memory states of the WORM device could be altered by changing the current conduction with charge trapping in the Al-rich Al 2O 3 layer. The memory exhibited good reading endurance and retention characteristics. © 2011 IEEE.published_or_final_versio

    A quantitative study of the relationship between the oxide charge trapping over the drain extension and the off-state drain leakage current

    Get PDF
    In this letter, we report an approach to quantitative study of the relationship between the oxide charge trapping over the drain extension due to electrical stress and the off-state drain leakage current. It is found that positive charge trapping over the drain extension leads to a significant increase in the off-state drain current if the edge direct tunneling (EDT) is dominant in the drain current but in contrast, it leads to a reduction in the drain current if the band-to-band tunneling in the Si surface is dominant. A quantitative relationship between the charge trapping and the off-state drain leakage current in the EDT regime is established. From the measurement of the off-state current in the EDT regime, the charge trapping can be determined by using the approach developed in this study. © 2004 American Institute of Physics.published_or_final_versio

    Influence of nitrogen on tunneling barrier heights and effective masses of electrons and holes at lightly-nitrided SiO2/Si interface

    Get PDF
    We have determined both the effective masses and the barrier heights for electrons and holes in pure SiO2 and lightly nitrided oxides with various nitrogen concentrations up to 4.5 at %. In contrast to previous studies which were usually carried out by assuming a value for either the effective mass or the barrier height, this study does not make such an assumption. The approach is proven to be reliable by examining the result for the well-studied pure SiO2 thin films. It is observed that with the increase of the nitrogen concentration the effective masses increase while both the barrier heights and the energy gap decrease. © 2004 American Institute of Physics.published_or_final_versio

    Pathological behaviour of the scalar graviton in Ho\v{r}ava-Lifshitz gravity

    Get PDF
    We confirm the recent claims that, in the infrared limit of Ho\v{r}ava-Lifshitz gravity, the scalar graviton becomes a ghost if the sound speed squared is positive on the flat de Sitter and Minkowski background. In order to avoid the ghost and tame the instability, the sound speed squared should be negative and very small, which means that the flow parameter λ\lambda should be very close to its General Relativity (GR) value. We calculate the cubic interactions for the scalar graviton which are shown to have a similar structure with those of the curvature perturbation in k-inflation models. The higher order interactions become increasing important for a smaller sound speed squared, that is, when the theory approaches GR. This invalidates any linearized analysis and any predictability is lost in this limit as quantum corrections are not controllable. This pathological behaviour of the scalar graviton casts doubt on the validity of the projectable version of the theory.Comment: 7 pages, references added; v3: Typos corrected, minor changes to text and precise determination of the strong coupling scale. Replaced to match published version

    Reproducibility of transmission line measurement of bipolar I-V characteristics of MOSFET's

    Get PDF
    Reproducibility of transmission line (TL) measurement of bipolar current-voltage (I-V) characteristics of grounded gate MOSFET's has been examined. It is observed that the reproducibility is related to the duration of the pulses generated by the transmission line, and a longer pulse duration gives a better reproducibility. For a short pulse duration, it is more difficult to reproduce the I-V characteristics in the triggering region than in other regions (i.e., the pretriggering and snapback regions).published_or_final_versio

    Numerical modeling of transient characteristics of photovoltage in Schottky contacts

    Get PDF
    Numerical modeling of the transient characteristics of the photovoltage at metal-semiconductor interfaces has been carried out with a simple model in which the contributions of different current transport processes including thermionic emission, tunneling, carrier recombination, and leakage current have been taken into account. The simulation gives the detailed dependence of the transient characteristics on temperature, doping concentration, Schottky barrier height, and leakage resistance. © 1994 American Institute of Physics.published_or_final_versio

    Cathodoluminescence from interband transitions in germanium (111) and gallium arsenide (100) crystals

    Get PDF
    The cathodoluminescence spectra in n-type Ge(111) and semi-insulating (SI) GaAs(100) were measured in the range 2.20-5.20 eV. We observed five structures at 3.05, 3.22, 3.60, 3.90, and 4.30 eV in n-type germanium which are assigned to interband transitions. These results are similar to those of previous works on p-type Ge(111). For SI GaAs, the five structures observed at 2.95, 3.26, 3.88, 4.28, and 4.96 eV also indicate electron-hole recombination transitions between bands. All these results agree with the predictions of theoretical calculations. For lightly doped germanium, it is observed that the band structure does not depend on doping type. © 1995 The American Physical Society.published_or_final_versio
    corecore