2,157 research outputs found

    Ground-based monitoring of comet 67P/Churyumov-Gerasimenko gas activity throughout the <i>Rosetta</i> mission

    Get PDF
    Simultaneously to the ESA Rosetta mission, a world-wide ground-based campaign provided measurements of the large scale activity of comet 67P/Churyumov-Gerasimenko through measurement of optically active gas species and imaging of the overall dust coma. We present more than two years of observations performed with the FORS2 low resolution spectrograph at the VLT, TRAPPIST, and ACAM at the WHT. We focus on the evolution of the CN production, as a tracer of the comet activity. We find that it is asymmetric with respect to perihelion and different from that of the dust. The CN emission is detected for the first time at 1.34 au pre-perihelion and production rates then increase steeply to peak about two weeks after perihelion at (1.00±0.10) ×1025 molecules s−1, while the post-perihelion decrease is more shallow. The evolution of the comet activity is strongly influenced by seasonal effects, with enhanced CN production when the Southern hemisphere is illuminated

    Evolution in the iron abundance of the ICM

    Get PDF
    We present a Chandra analysis of the X-ray spectra of 56 clusters of galaxies at z>0.3z>0.3, which cover a temperature range of 3>kT>153> kT > 15 keV. Our analysis is aimed at measuring the iron abundance in the ICM out to the highest redshift probed to date. We find that the emission-weighted iron abundance measured within (0.15−0.3)Rvir(0.15-0.3) R_{vir} in clusters below 5 keV is, on average, a factor of ∼2\sim2 higher than in hotter clusters, following Z(T)≃0.88T−0.47Z⊙Z(T)\simeq 0.88 T^{-0.47} Z_\odot, which confirms the trend seen in local samples. We made use of combined spectral analysis performed over five redshift bins at 0.3>z>1.30.3> z > 1.3 to estimate the average emission weighted iron abundance. We find a constant average iron abundance ZFe≃0.25Z⊙Z_{Fe}\simeq 0.25 Z_\odot as a function of redshift, but only for clusters at z>0.5z>0.5. The emission-weighted iron abundance is significantly higher (ZFe≃0.4Z⊙Z_{Fe}\simeq0.4 Z_\odot) in the redshift range z≃0.3−0.5z\simeq0.3-0.5, approaching the value measured locally in the inner 0.15Rvir0.15 R_{vir} radii for a mix of cool-core and non cool-core clusters in the redshift range 0.1<z<0.30.1<z<0.3. The decrease in ZFeZ_{Fe} with zz can be parametrized by a power law of the form ∼(1+z)−1.25\sim(1+z)^{-1.25}. The observed evolution implies that the average iron content of the ICM at the present epoch is a factor of ∼2\sim2 larger than at z≃1.2z\simeq 1.2. We confirm that the ICM is already significantly enriched (ZFe≃0.25Z⊙Z_{Fe}\simeq0.25 Z_\odot) at a look-back time of 9 Gyr. Our data provide significant constraints on the time scales and physical processes that drive the chemical enrichment of the ICM.Comment: 4 pages, 4 figures, to appear in the Proceedings of "The Extreme Universe in the Suzaku Era", Dicember 2006, Kyoto (Japan

    A simple and efficient method for predicting protein-protein binding sites.

    Get PDF
    In this work, we propose a strategy for predicting binding sites by exploiting the characteristic of core and rim regions of binding sites mentioned above, while using simple and well-know pattern recognition techniques.X-meeting 2007

    Where does the gas fueling star formation in BCGs originate?

    Get PDF
    We investigate the relationship between X-ray cooling and star formation in brightest cluster galaxies (BCGs). We present an X-ray spectral analysis of the inner regions, 10-40 kpc, of six nearby cool core clusters (z<0.35) observed with Chandra ACIS. This sample is selected on the basis of the high star formation rate (SFR) observed in the BCGs. We restrict our search for cooling gas to regions that are roughly cospatial with the starburst. We fit single- and multi-temperature mkcflow models to constrain the amount of isobarically cooling intracluster medium (ICM). We find that in all clusters, below a threshold temperature ranging between 0.9 and 3 keV, only upper limits can be obtained. In four out of six objects, the upper limits are significantly below the SFR and in two, namely A1835 and A1068, they are less than a tenth of the SFR. Our results suggests that a number of mechanisms conspire to hide the cooling signature in our spectra. In a few systems the lack of a cooling signature may be attributed to a relatively long delay time between the X-ray cooling and the star burst. However, for A1835 and A1068, where the X-ray cooling time is shorter than the timescale of the starburst, a possible explanation is that the region where gas cools out of the X-ray phase extends to very large radii, likely beyond the core of these systems.Comment: to appear in A&

    Tracing the evolution in the iron content of the ICM

    Get PDF
    We present a Chandra analysis of the X-ray spectra of 56 clusters of galaxies at z>0.3, which cover a temperature range of 3>kT>15 keV. Our analysis is aimed at measuring the iron abundance in the ICM out to the highest redshift probed to date. We find that the emission-weighted iron abundance measured within (0.15-0.3)R_vir in clusters below 5 keV is, on average, a factor of ~2 higher than in hotter clusters, following Z(T)~0.88T^-(0.47)Z_o, which confirms the trend seen in local samples. We made use of combined spectral analysis performed over five redshift bins at 0.3>z>1.3 to estimate the average emission weighted iron abundance. We find a constant average iron abundance Z_Fe~0.25Z_o as a function of redshift, but only for clusters at z>0.5. The emission-weighted iron abundance is significantly higher (Z_Fe~0.4Z_o) in the redshift range z~0.3-0.5, approaching the value measured locally in the inner 0.15R_vir radii for a mix of cool-core and non cool-core clusters in the redshift range 0.1<z<0.3. The decrease in Z_Fe with redshift can be parametrized by a power law of the form ~(1+z)^(-1.25). The observed evolution implies that the average iron content of the ICM at the present epoch is a factor of ~2 larger than at z=1.2. We confirm that the ICM is already significantly enriched (Z_Fe~0.25Z_o) at a look-back time of 9 Gyr. Our data provide significant constraints on the time scales and physical processes that drive the chemical enrichment of the ICM.Comment: 6 pages, 6 figures, to appear in the Proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching (Germany

    Purine and Pyrimidine Salvage in Whole Rat Brain. Utilization of ATP-derived Ribose-1-Phosphate and 5-Phosphoribosyl-1-pyrophosphate Generated in Experiments with Dialyzed Cell-free Extracts

    Get PDF
    The object of this work stems from our previous studies on the mechanisms responsible of ribose-1-phosphate- and 5-phosphoribosyl-1-pyrophosphate-mediated nucleobase salvage and 5-fluorouracil activation in rat brain (Mascia, L., Cappiello M., Cherri, S., and Ipata, P. L. (2000) Biochim. Biophys. Acta 1474, 70-74; Mascia, L., Cotrufo, T., Cappiello, M., and Ipata, P. L. (1999) Biochim. Biophys. Acta 1472, 93-98). Here we show that when ATP at "physiological concentration" is added to dialyzed extracts of rat brain in the presence of natural nucleobases or 5-fluorouracil, adenine-, hypoxanthine-, guanine-, uracil-, and 5-fluorouracil-ribonucleotides are synthesized. The molecular mechanism of this peculiar nueleotide synthesis relies on the capacity of rat brain to salvage purine and pyrimidine bases by deriving ribose-1-phosphate and 5-phosphoribosyl-1-pyrophosphate from ATP even in the absence of added pentose or pentose phosphates. The levels of the two sugar phosphates formed are compatible with those of synthesized nucleotides. We propose that the ATP-mediated 5-phosphoribosyl-1-pyrophosphate synthesis occurs through the action of purine nucleoside phosphorylase, phosphopentomutase, and 5-phosphoribosyl-1-pyrophosphate synthetase. Furthering our previous observations on the effect of ATP in the 5-phosphoribosyl-1-pyrophosphate-mediated 5-fluorouracil activation in rat liver (Mascia, L., and Ipata, P. L. (2001) Biochem. Pharmacol. 62, 213-218), we now show that the ratio [5-phosphoribosyl-1-pyrophosphate]/[ATP] plays a major role in modulating adenine salvage in rat brain. On the basis of our in vitro results, we suggest that massive ATP degradation, as it occurs in brain during ischemia, might lead to an increase of the intracellular 5-phosphoribosyl-1-pyrophosphate and ribose-1-phosphate pools, to be utilized for nucleotide resynthesis during reperfusion
    • …
    corecore