3,950 research outputs found
Quantum mechanical virial theorem in systems with translational and rotational symmetry
Generalized virial theorem for quantum mechanical nonrelativistic and
relativistic systems with translational and rotational symmetry is derived in
the form of the commutator between the generator of dilations G and the
Hamiltonian H. If the conditions of translational and rotational symmetry
together with the additional conditions of the theorem are satisfied, the
matrix elements of the commutator [G, H] are equal to zero on the subspace of
the Hilbert space. Normalized simultaneous eigenvectors of the particular set
of commuting operators which contains H, J^{2}, J_{z} and additional operators
form an orthonormal basis in this subspace. It is expected that the theorem is
relevant for a large number of quantum mechanical N-particle systems with
translational and rotational symmetry.Comment: 24 pages, accepted for publication in International Journal of
Theoretical Physic
Transition Temperature of a Uniform Imperfect Bose Gas
We calculate the transition temperature of a uniform dilute Bose gas with
repulsive interactions, using a known virial expansion of the equation of
state. We find that the transition temperature is higher than that of an ideal
gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a
is the S-wave scattering length, and K_0 is a constant given in the paper. This
disagrees with all existing results, analytical or numerical. It agrees exactly
in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe
Why does a metal-superconductor junction have a resistance?
This is a tutorial article based on a lecture delivered in June 1999 at the
NATO Advanced Study Institute in Ankara. The phenomenon of Andreev reflection
is introduced as the electronic analogue of optical phase-conjugation. In the
optical problem, a disordered medium backed by a phase-conjugating mirror can
become completely transparent. Yet, a disordered metal connected to a
superconductor has the same resistance as in the normal state. The resolution
of this paradox teaches us a fundamental difference between phase conjugation
of light and electrons.Comment: 12 pages, 5 postscript figures [v2: all figures inline
Symmetry Properties on Magnetization in the Hubbard Model at Finite Temperatures
By making use of some symmetry properties of the relevant Hamiltonian, two
fundamental relations between the ferromagnetic magnetization and a spin
correlation function are derived for the -dimensional Hubbard model
at finite temperatures. These can be viewed as a kind of Ward-Takahashi
identities. The properties of the magnetization as a function of the applied
field are discussed. The results thus obtained hold true for both repulsive and
attractive on-site Coulomb interactions, and for arbitrary electron fillings.Comment: Latex file, no figur
Fermion Scattering off CP-Violating Electroweak Bubble Wall
A general prescription to solve the Dirac equation in the presence of
CP-violating electroweak bubble wall is presented. The profile of the bubble
wall is not specified except that the wall height is and zero deep in the
broken- and the symmetric-phase regions, respectively, where is a fermion
mass given by the Higgs-vacuum-expectation value and the Yukawa coupling. The
CP-violating effects are evaluated by regarding CP-violating part of the bubble
wall as a perturbation to CP-conserving solutions. The basic quantity,
, which would contribute to the
cosmological baryon asymmetry, is estimated for some typical profiles of the
wall, where () is the reflection
coefficient of right-handed chiral fermion (anti-fermion).Comment: 30 pages, 2 figures ( uuencoded tar.Z file of PS files is appended ),
plain TeX with phyzzx, tables and epsf,SAGA-HE-55--KYUSHU-HET-1
Influence of steps on the tilting and adsorption dynamics of ordered Pn films on vicinal Ag(111) surfaces
Here we present a structural study of pentacene (Pn) thin films on vicinal
Ag(111) surfaces by He atom diffraction measurements and density functional
theory (DFT) calculations supplemented with van der Waals (vdW) interactions.
Our He atom diffraction results suggest initial adsorption at the step edges
evidenced by initial slow specular reflection intensity decay rate as a
function of Pn deposition time. In parallel with the experimental findings, our
DFT+vdW calculations predict the step edges as the most stable adsorption site
on the surface. An isolated molecule adsorbs as tilted on the step edge with a
binding energy of 1.4 eV. In addition, a complete monolayer (ML) with
pentacenes flat on the terraces and tilted only at the step edges is found to
be more stable than one with all lying flat or tilted molecules, which in turn
influences multilayers. Hence our results suggest that step edges can trap Pn
molecules and act as nucleation sites for the growth of ordered thin films with
a crystal structure similar to that of bulk Pn.Comment: 4 pages, 4 figures, 1 tabl
Holographic Approach to Regge Trajectory and Rotating D5 brane
We study the Regge trajectories of holographic mesons and baryons by
considering rotating strings and D5 brane, which is introduced as the baryon
vertex. Our model is based on the type IIB superstring theory with the
background of asymptotic . This background is dual to a
confining supersymmetric Yang-Mills theory (SYM) with gauge condensate,
, which determines the tension of the linear potential between the quark
and anti-quark. Then the slope of the meson trajectory () is given
by this condensate as at large spin . This
relation is compatible with the other theoretical results and experiments. For
the baryon, we show the importance of spinning baryon vertex to obtain a Regge
slope compatible with the one of and series. In both cases, mesons
and baryons, the trajectories are shifted to large mass side with the same
slope for increasing current quark mass.Comment: 28 pages, 7 figure
- …
