25,144 research outputs found

    In search for natural wormholes

    Get PDF
    We have investigated 631 time profiles of gamma ray bursts from the BATSE database searching for observable signatures produced by microlensing events related to natural wormholes. The results of this first search of topologically nontrivial objects in the Universe can be used to constrain their number and mass.Comment: Mod. Phys. Lett. A. (in press) Latex (revtex style) with no figure

    Study of the D∗ρD^*\rho system using QCD sum rules

    Full text link
    In this talk I present a study of the D∗ρD^* \rho system made by using the method of QCD sum rules. Considering isospin and spin projectors, we investigate the different configurations and obtain three D∗D^* mesons with isospin I=1/2I=1/2, spin S=0S=0, 11, 22 and with masses 2500±672500\pm 67 MeV, 2523±602523\pm60 MeV, and 2439±1192439\pm119 MeV, respectively. The last state can be related to D2∗(2460)D^*_2(2460) (spin 2) listed by the Particle Data Group, while one of the first two might be associated with D∗(2640)D^*(2640), whose spin-parity is unknown. In the case of I=3/2I=3/2 we also find evidences of three states with spin 0, 1 and 2, respectively, with masses 2467±822467\pm82 MeV, 2420±1282420\pm128 MeV, and 2550±562550\pm56 MeV.Comment: Contribution to the proceedings of the XXXVI Reuni\~ao de Trabalho sobre F\'isica Nuclear no Brasil, Maresias, S\~ao Paulo, Brazi

    Degeneracy in exotic gravitational lensing

    Get PDF
    We present three different theoretically foreseen, but unusual, astrophysical situations where the gravitational lens equation ends up being the same, thus producing a degeneracy problem. These situations are (a) the case of gravitational lensing by exotic stresses (matter violating the weak energy condition and thus having a negative mass, particular cases of wormholes solutions can be used as an example), (b) scalar field gravitational lensing (i.e. when considering the appearance of a scalar charge in the lensing scenario), and (c) gravitational lensing in closed universes (with antipodes).The reasons that lead to this degeneracy in the lens equations, the possibility of actually encountering it in the real universe, and eventually the ways to break it, are discussed.Comment: Accepted for publication in Modern Physics Letters

    Cerenkov radiation and scalar stars

    Full text link
    We explore the possibility that a charged particle moving in the gravitational field generated by a scalar star could radiate energy via a recently proposed gravitational \v{C}erenkov mechanism. We numerically prove that this is not possible for stable boson stars. We also show that soliton stars could have \v{C}erenkov radiation for particular values of the boson mass, although diluteness of the star grows and actual observational possibility decreases for the more usually discussed boson masses. These conclusions diminish, although do not completely rule out, the observational possibility of actually detecting scalar stars using this mechanism, and lead us to consider other forms, like gravitational lensing.Comment: Accepted for publication in Class. Quantum Gra

    Interpreting the peak structures around 1800 MeV in the BES data on J/Κ→ϕπ+π−J/\Psi \to \phi \pi^+ \pi^-, J/Îšâ†’ÎłÏ‰Ï•J/\Psi\to \gamma \omega \phi

    Full text link
    In this talk we present an interpretation for the experimental data available on two different processes, namely, J/Κ→ϕπ+π−J/\Psi \to \phi \pi^+ \pi^-, J/Îšâ†’ÎłÏ‰Ï•J/\Psi\to \gamma \omega \phi, which seem to indicate existence of two new resonances with the same quantum numbers (Jπc=0++,I=0J^{\pi c}=0^{++}, I = 0) and very similar mass (~1800 MeV) but with very different decay properties. However, our studies show that the peak structure found in the ωϕ\omega \phi invariant mass, in J/Îšâ†’ÎłÏ‰Ï•J/\Psi \to \gamma \omega \phi, is a manifestation of the well known f0(1710)f_0(1710) while the cross section enhancement found in J/Κ→ϕπ+π−J/\Psi \to \phi \pi^+ \pi^- is indeed a new f0f_0 resonance with mass near 1800 MeV. We present an explanation for the different decay properties of these two scalar resonances.Comment: Proceedings for the nuclear physics meeting ("XXXVI Reuni\~ao de trabalho sobre f\'isica nuclear no Brasil") held in Maresias during Sept. 1-5. To be published as AIP proceeding

    Reissner-Nordstrom black hole lensing

    Get PDF
    In this paper we study the strong gravitational lensing scenario where the lens is a Reissner-Nordstrom black hole. We obtain the basic equations and show that, as in the case of Schwarzschild black hole, besides the primary and secondary images, two infinite sets of relativistic images are formed. We find analytical expressions for the positions and amplifications of the relativistic images. The formalism is applied to the case of a low-mass black hole placed at the galactic halo.Comment: 16 pages, 5 figure

    Influence of detector motion in entanglement measurements with photons

    Full text link
    We investigate how the polarization correlations of entangled photons described by wave packets are modified when measured by moving detectors. For this purpose, we analyze the Clauser-Horne-Shimony-Holt Bell inequality as a function of the apparatus velocity. Our analysis is motivated by future experiments with entangled photons designed to use satellites. This is a first step towards the implementation of quantum information protocols in a global scale

    Decoherence in a double-slit quantum eraser

    Full text link
    We study and experimentally implement a double-slit quantum eraser in the presence of a controlled decoherence mechanism. A two-photon state, produced in a spontaneous parametric down conversion process, is prepared in a maximally entangled polarization state. A birefringent double-slit is illuminated by one of the down-converted photons, and it acts as a single-photon two-qubits controlled not gate that couples the polarization with the transversal momentum of these photons. The other photon, that acts as a which-path marker, is sent through a Mach-Zehnder-like interferometer. When the interferometer is partially unbalanced, it behaves as a controlled source of decoherence for polarization states of down-converted photons. We show the transition from wave-like to particle-like behavior of the signal photons crossing the double-slit as a function of the decoherence parameter, which depends on the length path difference at the interferometer.Comment: Accepted in Physical Review

    The population of SNe/SNRs in the starburst galaxy Arp 220. A self-consistent analysis of 20 years of VLBI monitoring

    Get PDF
    The nearby ultra-luminous infrared galaxy (ULIRG) Arp 220 is an excellent laboratory for studies of extreme astrophysical environments. For 20 years, Very Long Baseline Interferometry (VLBI) has been used to monitor a population of compact sources thought to be supernovae (SNe), supernova remnants (SNRs) and possibly active galactic nuclei (AGNs). Using new and archival VLBI data spanning 20 years, we obtain 23 high-resolution radio images of Arp 220 at wavelengths from 18 cm to 2 cm. From model-fitting to the images we obtain estimates of flux densities and sizes of all detected sources. We detect radio continuum emission from 97 compact sources and present flux densities and sizes for all analysed observation epochs. We find evidence for a LD-relation within Arp 220, with larger sources being less luminous. We find a compact source LF n(L)∝LÎČn(L)\propto L^\beta with ÎČ=−2.19±0.15\beta=-2.19\pm0.15, similar to SNRs in normal galaxies. Based on simulations we argue that there are many relatively large and weak sources below our detection threshold. The observations can be explained by a mixed population of SNe and SNRs, where the former expand in a dense circumstellar medium (CSM) and the latter interact with the surrounding interstellar medium (ISM). Nine sources are likely luminous, type IIn SNe. This number of luminous SNe correspond to few percent of the total number of SNe in Arp 220 which is consistent with a total SN-rate of 4 yr−1^{-1} as inferred from the total radio emission given a normal stellar initial mass function (IMF). Based on the fitted luminosity function, we argue that emission from all compact sources, also below our detection threshold, make up at most 20\% of the total radio emission at GHz frequencies.Comment: Accepted for publication in Astronomy and Astrophysic
    • 

    corecore