107 research outputs found

    Self-attraction effect and correction on three absolute gravimeters

    Full text link
    The perturbations of the gravitational field due to the mass distribution of an absolute gravimeter have been studied. The so called Self Attraction Effect (SAE) is crucial for the measurement accuracy, especially for the International Comparisons, and for the uncertainty budget evaluation. Three instruments have been analysed: MPG-2, FG5-238 and IMPG-02. The SAE has been calculated using a numerical method based on FEM simulation. The observed effect has been treated as an additional vertical gravity gradient. The correction (SAC) to be applied to the computed g value has been associated with the specific height level, where the measurement result is typically reported. The magnitude of the obtained corrections is of order 1E-8 m/s2.Comment: 14 pages, 8 figures, submitted to Metrologi

    Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data

    Get PDF
    A global geopotential model, like EGM2008, is not capable of representing the high-frequency components of Earth?s gravity field. This is known as the omission error. In mountainous terrain, omission errors in EGM2008, even when expanded to degree 2,190, may reach amplitudes of10cm and more for height anomalies. The present paper proposes the utilisation of high-resolution residual terrain model (RTM) data for computing estimates of the omission error in rugged terrain. RTM elevations may be constructed as the difference between the SRTM (Shuttle Radar Topography Mission) elevation model and the DTM2006.0 spherical harmonic topographic expansion. Numerical tests, carried out in the German Alps with a precise gravimetric quasigeoid model (GCG05) and GPS/levelling data as references, demonstrate that RTM-based omission error estimatesimprove EGM2008 height anomaly differences by 10cm in many cases. The comparisons of EGM2008-only height anomalies and the GCG05 model showed 3.7 cm standard deviation after a bias-fit. Applying RTM omission error estimates to EGM2008 reduces the standard deviation to 1.9 cm which equates to a significant improvement rate of 47%. Using GPS/levelling data strongly corroborates thesefindings with an improvement rate of 49%. The proposed RTM approach may be of practical value to improve quasigeoid determination in mountainous areas without sufficient regional gravity data coverage, e.g., in parts of Asia, South America or Africa. As a further application, RTMomission error estimates will allow refined validation of global gravity field models like EGM2008 from GPS/levelling data

    Mutual Validation of GNSS Height Measurements and High-precision Geometric-astronomical Leveling

    Get PDF
    The method of geometric-astronomical leveling is presented as a suited technique for the validation of GNSS (Global Navigation Satellite System) heights. In geometric-astronomical leveling, the ellipsoidal height differences are obtained by combining conventional spirit leveling and astronomical leveling. Astronomical leveling with recently developed digital zenith camera systems is capable of providing the geometry of equipotential surfaces of the gravity field accurate to a few 0.1 mm per km. This is comparable to the accuracy of spirit leveling. Consequently, geometric-astronomical leveling yields accurate ellipsoidal height differences that may serve as an independent check on GNSS height measurements at local scales. A test was performed in a local geodetic network near Hanover. GPS observations were simultaneously carried out at five stations over a time span of 48 h and processed considering state-of-the-art techniques and sophisticated new approaches to reduce station-dependent errors. The comparison of GPS height differences with those from geometric-astronomical leveling shows a promising agreement of some millimeters. The experiment indicates the currently achievable accuracy level of GPS height measurements and demonstrates the practical applicability of the proposed approach for the validation of GNSS height measurements as well as the evaluation of GNSS height processing strategies

    Gravity and elevation changes at Askja, Iceland

    Get PDF
    Ground tilt measurements demonstrate that Askja is in a state of unrest, and that in the period 1988 - 1991 a maximum 48 +/- 3 µrad tilt occurred down towards the centre of the caldera. This is consistent with 126 mm of deflation at the centre of the caldera with a 2.5 - 3.0 km depth to the source of deformation. The volume of the subsidence bowl is 6.2 x 106 m3. When combined with high precision microgravity measurements, the overall change in sub-surface mass may be quantified. After correction for the observed elevation change using the free air gradient of gravity measured for each station, the total change in mass is estimated to be less than 109 kg. A small residual ground inflation and net gravity increase in the eastern part of the caldera may be caused by dyke intrusion in this region. The minimum dimensions of such an intrusion or complex of intrusions are 1m width, up to 100m deep and up to several hundred metres thick

    Expected accuracy of tilt measurements on a novel hexapod-based Digital zenith camera system: A Monte-Carlo simulation study

    Get PDF
    Digital zenith camera systems (DZCS) are dedicated astronomical-geodetic measurement systems for the observation of the direction of the plumb line. A DZCS key component is a pair of tilt meters for the determination of the instrumental tilt with respect to the plumb line. Highest accuracy (i.e., 0.1 arc-seconds or better) is achieved in practice through observation with precision tilt meters in opposite faces (180° instrumental rotation), and application of rigorous tilt reduction models. A novel concept proposes the development of a hexapod (Stewart platform)-based DZCS. However, hexapod-based total rotations are limited to about 30°–60° in azimuth (equivalent to ±15° to ±30° yaw rotation), which raises the question of the impact of the rotation angle between the two faces on the accuracy of the tilt measurement. The goal of the present study is the investigation of the expected accuracy of tilt measurements to be carried out on future hexapod-based DZCS, with special focus placed on the role of the limited rotation angle. A Monte-Carlo simulation study is carried out in order to derive accuracy estimates for the tilt determination as a function of several input parameters, and the results are validated against analytical error propagation.As the main result of the study, limitation of the instrumental rotation to 60° (30°) deteriorates the tilt accuracy by a factor of about 2 (4) compared to a 180° rotation between the faces. Nonetheless, a tilt accuracy at the 0.1 arc-second level is expected when the rotation is at least 45°, and 0.05 arc-second (about 0.25 microradian) accurate tilt meters are deployed. As such, a hexapod-based DZCS can be expected to allow sufficiently accurate determination of the instrumental tilt. This provides supporting evidence for the feasibility of such a novel instrumentation. The outcomes of our study are not only relevant to the field of DZCS, but also to all other types of instruments where the instrumental tilt must be corrected. Examples include electronic theodolites or total stations, gravity meters, and other hexapod-based telescopes

    O estabelecimento de padrões de referência altimétrica utilizando o nivelamento geométrico para a definição de alvos altos e inacessíveis

    Get PDF
    As estruturas geodésicas altimétricas são fundamentais para os projetos de Engenharia. Neste contexto, pode-se utilizar a tecnologia do nível digital para a determinação de pontos de referência altimétrica através do método do nivelamento geométrico. Outra solução é a utilização da tecnologia da estação total para a determinação de altitudes em pontos situados em locais altos e inacessíveis nas estruturas arquitetônicas, como por exemplo, alvos em estrutura de edificação situados em torres de igrejas e para a realização de uma estrutura geodésica através do método de nivelamento trigonométrico. As estruturas geodésicas altimétricas, implantadas e determinadas pelo método do nivelamento geométrico, materializam, neste trabalho, pontos para o estabelecimento de padrões de referência altimétrica e para a determinação altimétrica de alvos altos e inacessíveis. As estruturas geodésicas foram implantadas e determinadas, no Sítio Histórico de Olinda, empregando-se nível digital de alta precisão e mira de ínvar com código de barras. Este trabalho tem como objetivo definir padrões de referência altimétrica utilizando o método de nivelamento geométrico, resultando na implantação e análise da qualidade de estruturas geodésicas altimétricas
    corecore