16 research outputs found

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Isolation of kinetic and spatial properties of uni-axial dynamic tensile loading of OFHC copper

    No full text
    Materials performance is recognized as being central to many emergent technologies. Future technologies will place increasing demands on materials performance with respect to extremes in stress, strain, temperature, and pressure. In this study, the dynamic ductile damage evolution of OFHC Cu is explored as a test bed to understand the role of spatial effects due to loading profile and defect density as well as the role of the kinetics of tensile pulse evolution. Well-characterized OFHC Cu samples of 30 μm, 60 μm, 100 μm, and 200 μm grain sizes were subjected to plate impact uniaxial strain loading in spall geometry to produce early stage (incipient damage. Using 2D metallographic techniques, soft recovered samples were studied to statistically link mesoscale processes to continuum level observations of free surface particle velocity measured with VISAR. Based on these findings, mechanisms for the void nucleation/growth and coalescence are proposed

    Surface-bound myeloperoxidase is a ligand for recognition of late apoptotic neutrophils by human lung surfactant proteins A and D

    No full text
    Surfactant proteins A (SP-A) and D (SP-D), both members of the collectin family, play a well established role in apoptotic cell recognition and clearance. Recent in vitro data show that SP-A and SP-D interact with apoptotic neutrophils in a distinct manner. SP-A and SP-D bind in a Ca2+-dependent manner to viable and early apoptotic neutrophils whereas the much greater interaction with late apoptotic neutrophils is Ca2+-independent. Cell surface molecules on the apoptotic target cells responsible for these interactions had not been identified and this study was done to find candidate target molecules. Myeloperoxidase (MPO), a specific intracellular defense molecule of neutrophils that becomes exposed on the outside of the cell upon apoptosis, was identified by affinity purification, mass-spectrometry and western blotting as a novel binding molecule for SP-A and SP-D. To confirm its role in recognition, it was shown that purified immobilised MPO binds SP-A and SP-D, and that MPO is surface-exposed on late apoptotic neutrophils. SP-A and SP-D inhibit binding of an anti-MPO monoclonal Ab to late apoptotic cells. Fluorescence microscopy confirmed that anti-MPO mAb and SP-A/SP-D colocalise on late apoptotic neutrophils. Desmoplakin was identified as a further potential ligand for SP-A, and neutrophil defensin as a target for both proteins. <br/

    The Feasibility of Pellet Re-Fuelling of a Fusion Reactor

    No full text
    corecore