16 research outputs found

    Generation and characterization of T40/A5754 interfaces with lasersPatrice

    Get PDF
    Laser-induced reactive wetting and brazing of T40 titanium with A5754 aluminum alloy with 1.5 mm thickness was carried out in lap-joint configuration, with or without the use of Al5Si filler wire. A 2.4 mm diameter laser spot was positioned on the aluminum side to provoke spreading and wetting of the lower titanium sheet, with relatively low scanning speeds (0.1–0.6 m/min). Process conditions did not play a very significant role on mechanical strengths, which were shown to reach 250–300 N/mm on a large range of laser power and scanning speeds. In all cases considered, the fracture during tensile testing occurred next to the TiAl3 interface, but in the aluminum fusion zone. The interfacial resistance was then evaluated with the LASAT bond strength tester, based upon the generation and propagation of laser-induced shock waves. A 0.68 GPa uniaxial bond strength was estimated for the T40/A5754 interface under dynamic loading conditions

    Aluminum to titanium laser welding-brazing in V-shaped grooveI

    Get PDF
    Laser assisted joining of AA5754 aluminum alloy to T40 titanium with use of Al-Si filler wires was carried out. Continuous Yb:YAG laser beam was shaped into double spot tandem and defocalized to cover larger interaction zone in V shaped groove. Experimental design method was applied to study the influence of operational parameters on the tensile properties of the joints. Microstructure examination and fractography study were carried out to understand the relation between local phase content and fracture mode. Within defined window of operational parameters, statistically important factors that influenced the strength of T40 to AA5754 joints in V groove configuration were Si content in the filler metal and groove opening angle on T40 side. The best quality joint showed joint coefficient of 90% (or 200 MPa of apparent UTS). Tensile strength of the joints was found to be determined by the proportion between well-developed and under-developed reaction zones of T40/melted zone interface. The formation of 2–25 μm thick Si-rich interlayers composed by Ti5Si3 and τ2 proved to enhance the strength of brazed interface. The creation of very thin (<0.5 μm) Si-rich layers at the bottom of the groove was found not sufficient to establish mechanical continuity of the joint and thus should be avoided

    Dissimilar joining of copper to stainless steel and TA6V to stainless steel by high power beams : understanding and modeling of physicochemical phenomena

    No full text
    La présente étude est dédiée à la compréhension des mécanismes de malaxage intervenant lors du soudage de matériaux dissimilaires par des sources de haute énergie et en particulier sur deux couples de matériaux présentant des problèmes métallurgiques différents : • cuivre - inox (lacune de miscibilité, différence de propriétés thermophysiques),• TA6V- inox (oxydation, formation de phases intermétalliques fragilisant la soudure).Pour le premier couple de matériaux, le soudage par laser Nd:YAG continu et par faisceau d'électrons a été utilisé. L'étude des évolutions de la morphologie des soudures, de la composition et de la microstructure des zones fondues ainsi que des propriétés mécaniques a permis de proposer des hypothèses sur les mécanismes de formation du mélange hétérogène à solubilité limitée. Afin de quantifier les phénomènes physiques intervenant en soudage continu de matériaux dissimilaires, la modélisation numérique a été mise en œuvre en utilisant le logiciel FEM "Comsol Multiphysics". Une série des modèles simulant les champs de températures, les mouvements convectifs et le malaxage (diffusion, méthode level set, méthode des champs de phases) a été créée. Dans le cas du laser, la formulation pseudo-stationnaire du transfert de chaleur basée sur la géométrie du capillaire simplifiée et la convection a été couplée avec les problèmes 2D de diffusion et de malaxage des matériaux dans différents plans horizontaux. En soudage par faisceau d'électrons, la morphologie de la microstructure a nécessité une formulation temporelle. Le modèle multiphysique final en couplage complet (solution multiphysique simultanée) reproduit le processus de formation d'une structure périodique de solidification lors du soudage par faisceau d'électrons et permet d'expliquer l'aspect des structures alternées entre matériaux immiscibles ou présentant de grandes différences de propriétés thermophysiques.Le deuxième couple de matériaux présente des problèmes métallurgiques majeurs liés à la formation des phases intermétalliques rendant l'assemblage direct par fusion impossible. La composition locale devient donc l'aspect-clef de la formation d’une soudure correcte : l'introduction d’un troisième matériau (cuivre) ayant une meilleure compatibilité avec le titane est nécessaire. Pour pouvoir déterminer les fenêtres optimales des conditions opératoires, les modèles numériques, créés précédemment, ont été adaptés pour quatre procédés de l’assemblage : faisceau d'électrons, soudage lasers Nd:YAG continu et pulsé, brasage par laser avec apport de fil. L'analyse élémentaire des microstructures dans les soudures résistantes mécaniquement a permis de développer le scénario de la solidification d'une zone fondue et de comprendre l'influence de la composition aux interfaces sur la résistance mécanique des assemblages.Les modèles numériques multiphysiques créés au cours de cette étude permettent l'accès rapide à la grande quantité d'information sur le comportement de la zone fondue en fonction des paramètres de soudage en se basant sur le nombre des données de départ relativement limité et sur quelques hypothèses simplificatrices. L'approche multiphysique à la modélisation de soudage permet de reproduire la forme de la zone fondue, visualiser les écoulements du liquide et cartographier la distribution de certains éléments avec une bonne corrélation avec les résultats expérimentaux. L'ensemble des modèles permet de déterminer les conditions opératoires répondant aux critères fixes en fonction de la métallurgie d'un couple hétérogène.The present study is dedicated to the comprehension of the mechanism of materials mixing during dissimilar welding by high power beam sources. We have been interested in joining of two couples of metallic materials which present different metallurgical problems: • copper- stainless steel (miscibility gap, important difference in physical properties);• TA6V- stainless steel (oxidation on air, formation of intermetallic phases which made the joint brittle).For the first couple of materials, continuous laser Nd:YAG welding and electron beam welding have been applied. The experimental study of morphology evolution, composition, microstructure and mechanical properties has allowed establishing the hypotheses on formation of heterogeneous mixture between the materials having limited solubility. To quantify the physical phenomena of continuous dissimilar welding, the numerical modeling has been carried out by means of FEM software package "Comsol Multiphysics". A number of models reproducing temperature field, convection movements and mixing (diffusion, level set method, phase field method) between the materials has been created. In case of continuous laser welding, the pseudo-stationary formulation of heat transfer based on simplified key-hole geometry and convection has been coupled with two-dimensional problems of diffusion and mixing in horizontal planes. The electron beam welding presenting the nonlinear development of the weld has needed employing of temporary formulation. Final model including complete coupling (simultaneous multiphysical solving) reproduces the process of development of periodic solidification structure during electron beam welding and allows explaining the mechanism of formation of altered structures between immiscible materials which have important difference in thermophysical properties.The second couple of materials presents weldability problems due to formation of brittle intermetallic phases making direct joining by fusion impossible. The local elementary composition becomes the key-aspect of successful joining: the introduction of the third material (pure copper) having better compatibility with titanium is necessary. To determine the ranges of optimal operational conditions, numerical models created previously have been adapted to the case of four joining techniques: electron beam and laser Nd:YAG (continuous and pulsed) welding and laser brazing with filler wire. Elementary analysis of microstructures of resistant welds has allowed developing the solidification scenario and understanding the influence of local composition of heterogeneous interfaces on tensile properties of the joints. The multiphysical models created during this study allow rapid access to high quantity of data on behavior of melted zone in function of welding parameters basing on relatively limited input data and several simplification hypotheses. The multiphysical approach to welding modeling allows recreating the shape of melted zone, to visualization the convection movements and providing the cartography of several elements in good correspondence with experimental results. A set of models allows determination of operational parameters respecting fixed criterions determined by metallurgy of dissimilar couple

    Assemblage hétérogène cuivre-inox et TA6V-inox par les faisceaux de haute énergie : compréhension et modélisation des phénomènes physico-chimiques

    No full text
    The present study is dedicated to the comprehension of the mechanism of materials mixing during dissimilar welding by high power beam sources. We have been interested in joining of two couples of metallic materials which present different metallurgical problems: •copper- stainless steel (miscibility gap, important difference in physical properties);•TA6V- stainless steel (oxidation on air, formation of intermetallic phases which made the joint brittle).For the first couple of materials, continuous laser Nd:YAG welding and electron beam welding have been applied. The experimental study of morphology evolution, composition, microstructure and mechanical properties has allowed establishing the hypotheses on formation of heterogeneous mixture between the materials having limited solubility. To quantify the physical phenomena of continuous dissimilar welding, the numerical modeling has been carried out by means of FEM software package "Comsol Multiphysics". A number of models reproducing temperature field, convection movements and mixing (diffusion, level set method, phase field method) between the materials has been created. In case of continuous laser welding, the pseudo-stationary formulation of heat transfer based on simplified key-hole geometry and convection has been coupled with two-dimensional problems of diffusion and mixing in horizontal planes. The electron beam welding presenting the nonlinear development of the weld has needed employing of temporary formulation. Final model including complete coupling (simultaneous multiphysical solving) reproduces the process of development of periodic solidification structure during electron beam welding and allows explaining the mechanism of formation of altered structures between immiscible materials which have important difference in thermophysical properties.The second couple of materials presents weldability problems due to formation of brittle intermetallic phases making direct joining by fusion impossible. The local elementary composition becomes the key-aspect of successful joining: the introduction of the third material (pure copper) having better compatibility with titanium is necessary. To determine the ranges of optimal operational conditions, numerical models created previously have been adapted to the case of four joining techniques: electron beam and laser Nd:YAG (continuous and pulsed) welding and laser brazing with filler wire. Elementary analysis of microstructures of resistant welds has allowed developing the solidification scenario and understanding the influence of local composition of heterogeneous interfaces on tensile properties of the joints. The multiphysical models created during this study allow rapid access to high quantity of data on behavior of melted zone in function of welding parameters basing on relatively limited input data and several simplification hypotheses. The multiphysical approach to welding modeling allows recreating the shape of melted zone, to visualization the convection movements and providing the cartography of several elements in good correspondence with experimental results. A set of models allows determination of operational parameters respecting fixed criterions determined by metallurgy of dissimilar couple.La présente étude est dédiée à la compréhension des mécanismes de malaxage intervenant lors du soudage de matériaux dissimilaires par des sources de haute énergie et en particulier sur deux couples de matériaux présentant des problèmes métallurgiques différents : •cuivre - inox (lacune de miscibilité, différence de propriétés thermophysiques),•TA6V- inox (oxydation, formation de phases intermétalliques fragilisant la soudure).Pour le premier couple de matériaux, le soudage par laser Nd:YAG continu et par faisceau d'électrons a été utilisé. L'étude des évolutions de la morphologie des soudures, de la composition et de la microstructure des zones fondues ainsi que des propriétés mécaniques a permis de proposer des hypothèses sur les mécanismes de formation du mélange hétérogène à solubilité limitée. Afin de quantifier les phénomènes physiques intervenant en soudage continu de matériaux dissimilaires, la modélisation numérique a été mise en œuvre en utilisant le logiciel FEM "Comsol Multiphysics". Une série des modèles simulant les champs de températures, les mouvements convectifs et le malaxage (diffusion, méthode level set, méthode des champs de phases) a été créée. Dans le cas du laser, la formulation pseudo-stationnaire du transfert de chaleur basée sur la géométrie du capillaire simplifiée et la convection a été couplée avec les problèmes 2D de diffusion et de malaxage des matériaux dans différents plans horizontaux. En soudage par faisceau d'électrons, la morphologie de la microstructure a nécessité une formulation temporelle. Le modèle multiphysique final en couplage complet (solution multiphysique simultanée) reproduit le processus de formation d'une structure périodique de solidification lors du soudage par faisceau d'électrons et permet d'expliquer l'aspect des structures alternées entre matériaux immiscibles ou présentant de grandes différences de propriétés thermophysiques.Le deuxième couple de matériaux présente des problèmes métallurgiques majeurs liés à la formation des phases intermétalliques rendant l'assemblage direct par fusion impossible. La composition locale devient donc l'aspect-clef de la formation d’une soudure correcte : l'introduction d’un troisième matériau (cuivre) ayant une meilleure compatibilité avec le titane est nécessaire. Pour pouvoir déterminer les fenêtres optimales des conditions opératoires, les modèles numériques, créés précédemment, ont été adaptés pour quatre procédés de l’assemblage : faisceau d'électrons, soudage lasers Nd:YAG continu et pulsé, brasage par laser avec apport de fil. L'analyse élémentaire des microstructures dans les soudures résistantes mécaniquement a permis de développer le scénario de la solidification d'une zone fondue et de comprendre l'influence de la composition aux interfaces sur la résistance mécanique des assemblages.Les modèles numériques multiphysiques créés au cours de cette étude permettent l'accès rapide à la grande quantité d'information sur le comportement de la zone fondue en fonction des paramètres de soudage en se basant sur le nombre des données de départ relativement limité et sur quelques hypothèses simplificatrices. L'approche multiphysique à la modélisation de soudage permet de reproduire la forme de la zone fondue, visualiser les écoulements du liquide et cartographier la distribution de certains éléments avec une bonne corrélation avec les résultats expérimentaux. L'ensemble des modèles permet de déterminer les conditions opératoires répondant aux critères fixes en fonction de la métallurgie d'un couple hétérogène

    Direct keyhole laser welding of aluminum alloy AA5754 to titanium alloy Ti6Al4V

    Get PDF
    The tensile strength of direct AA5754/Ti6Al4V joints performed by high speed Yb:YAG laser welding is found to be determined by morphology and phase content of dissimilar interface formed between contacting Al-rich and Ti-rich melted zones. Three types of contact interfaces were observed: (1) thin (10 m/min. Maximal linear tensile force (220 N/mm for 2 mm thick weld) can be attained when thin contact interface is formed. In this case, the fracture starts in intermetallics-rich zone but propagates mainly in Al-rich melted zone, when in other cases it occurs in brittle intermetallic layers

    Assemblage hétérogène cuivre-inox et TA6V-inox par les faisceaux de haute énergie (compréhension et modélisation des phénomènes physico-chimiques)

    No full text
    La présente étude est dédiée à la compréhension des mécanismes de malaxage intervenant lors du soudage de matériaux dissimilaires par des sources de haute énergie et en particulier sur deux couples de matériaux présentant des problèmes métallurgiques différents : cuivre - inox (lacune de miscibilité, différence de propriétés thermophysiques), TA6V- inox (oxydation, formation de phases intermétalliques fragilisant la soudure).Pour le premier couple de matériaux, le soudage par laser Nd:YAG continu et par faisceau d'électrons a été utilisé. L'étude des évolutions de la morphologie des soudures, de la composition et de la microstructure des zones fondues ainsi que des propriétés mécaniques a permis de proposer des hypothèses sur les mécanismes de formation du mélange hétérogène à solubilité limitée. Afin de quantifier les phénomènes physiques intervenant en soudage continu de matériaux dissimilaires, la modélisation numérique a été mise en œuvre en utilisant le logiciel FEM "Comsol Multiphysics". Une série des modèles simulant les champs de températures, les mouvements convectifs et le malaxage (diffusion, méthode level set, méthode des champs de phases) a été créée. Dans le cas du laser, la formulation pseudo-stationnaire du transfert de chaleur basée sur la géométrie du capillaire simplifiée et la convection a été couplée avec les problèmes 2D de diffusion et de malaxage des matériaux dans différents plans horizontaux. En soudage par faisceau d'électrons, la morphologie de la microstructure a nécessité une formulation temporelle. Le modèle multiphysique final en couplage complet (solution multiphysique simultanée) reproduit le processus de formation d'une structure périodique de solidification lors du soudage par faisceau d'électrons et permet d'expliquer l'aspect des structures alternées entre matériaux immiscibles ou présentant de grandes différences de propriétés thermophysiques.Le deuxième couple de matériaux présente des problèmes métallurgiques majeurs liés à la formation des phases intermétalliques rendant l'assemblage direct par fusion impossible. La composition locale devient donc l'aspect-clef de la formation d une soudure correcte : l'introduction d un troisième matériau (cuivre) ayant une meilleure compatibilité avec le titane est nécessaire. Pour pouvoir déterminer les fenêtres optimales des conditions opératoires, les modèles numériques, créés précédemment, ont été adaptés pour quatre procédés de l assemblage : faisceau d'électrons, soudage lasers Nd:YAG continu et pulsé, brasage par laser avec apport de fil. L'analyse élémentaire des microstructures dans les soudures résistantes mécaniquement a permis de développer le scénario de la solidification d'une zone fondue et de comprendre l'influence de la composition aux interfaces sur la résistance mécanique des assemblages.Les modèles numériques multiphysiques créés au cours de cette étude permettent l'accès rapide à la grande quantité d'information sur le comportement de la zone fondue en fonction des paramètres de soudage en se basant sur le nombre des données de départ relativement limité et sur quelques hypothèses simplificatrices. L'approche multiphysique à la modélisation de soudage permet de reproduire la forme de la zone fondue, visualiser les écoulements du liquide et cartographier la distribution de certains éléments avec une bonne corrélation avec les résultats expérimentaux. L'ensemble des modèles permet de déterminer les conditions opératoires répondant aux critères fixes en fonction de la métallurgie d'un couple hétérogène.The present study is dedicated to the comprehension of the mechanism of materials mixing during dissimilar welding by high power beam sources. We have been interested in joining of two couples of metallic materials which present different metallurgical problems: copper- stainless steel (miscibility gap, important difference in physical properties); TA6V- stainless steel (oxidation on air, formation of intermetallic phases which made the joint brittle).For the first couple of materials, continuous laser Nd:YAG welding and electron beam welding have been applied. The experimental study of morphology evolution, composition, microstructure and mechanical properties has allowed establishing the hypotheses on formation of heterogeneous mixture between the materials having limited solubility. To quantify the physical phenomena of continuous dissimilar welding, the numerical modeling has been carried out by means of FEM software package "Comsol Multiphysics". A number of models reproducing temperature field, convection movements and mixing (diffusion, level set method, phase field method) between the materials has been created. In case of continuous laser welding, the pseudo-stationary formulation of heat transfer based on simplified key-hole geometry and convection has been coupled with two-dimensional problems of diffusion and mixing in horizontal planes. The electron beam welding presenting the nonlinear development of the weld has needed employing of temporary formulation. Final model including complete coupling (simultaneous multiphysical solving) reproduces the process of development of periodic solidification structure during electron beam welding and allows explaining the mechanism of formation of altered structures between immiscible materials which have important difference in thermophysical properties.The second couple of materials presents weldability problems due to formation of brittle intermetallic phases making direct joining by fusion impossible. The local elementary composition becomes the key-aspect of successful joining: the introduction of the third material (pure copper) having better compatibility with titanium is necessary. To determine the ranges of optimal operational conditions, numerical models created previously have been adapted to the case of four joining techniques: electron beam and laser Nd:YAG (continuous and pulsed) welding and laser brazing with filler wire. Elementary analysis of microstructures of resistant welds has allowed developing the solidification scenario and understanding the influence of local composition of heterogeneous interfaces on tensile properties of the joints. The multiphysical models created during this study allow rapid access to high quantity of data on behavior of melted zone in function of welding parameters basing on relatively limited input data and several simplification hypotheses. The multiphysical approach to welding modeling allows recreating the shape of melted zone, to visualization the convection movements and providing the cartography of several elements in good correspondence with experimental results. A set of models allows determination of operational parameters respecting fixed criterions determined by metallurgy of dissimilar couple.DIJON-BU Doc.électronique (212319901) / SudocSudocFranceF

    In-situ study of keyhole behavior during a laser pulse applied to the dissimilar metal joint

    No full text
    International audienceIn the present study, the method of frontal observation of the keyhole through the fused quartz window is applied to the dissimilar combinations between stainless steel 316L and different metals chosen to illustrate four typical cases of mismatch in physical properties: a much lower vaporization temperature (316L/magnesium alloy AZ31), a much higher vaporization temperature (316L/pure niobium), a more reflective and conductive metal (316L/aluminum alloy A5754) and an extremely reflective metal (316L/pure copper). A standalone Yb:YAG laser pulse was applied to the dissimilar couple/quartz and metal/quartz joints. Each of these cases was studied using image treatment of the obtained high-speed videos and post-mortem observation of the interaction zone. Basing on the analysis of the physical properties of the metals and their interdependencies, the first criterion of keyhole development in the dissimilar joint is proposed. It is concluded that in case of Yb:YAG laser welding of stainless steel with metals having thermal conductivity ≤200 W · m−1 · K−1, the keyhole development is dominant in the metal having lower vaporization temperature, while for the 316L combinations with the metals having thermal conductivity >200 W · m−1 · K−1, the keyhole development remains dominant on the 316L side, but its progression is slowed down by the neighboring metal
    corecore