2,042 research outputs found

    Performance of the LHCb High Level Trigger in 2012

    Full text link
    The trigger system of the LHCb experiment is discussed in this paper and its performance is evaluated on a dataset recorded during the 2012 run of the LHC. The main purpose of the LHCb trigger system is to separate heavy flavour signals from the light quark background. The trigger reduces the roughly 11MHz of bunch-bunch crossings with inelastic collisions to a rate of 5kHz, which is written to storage.Comment: Proceedings for the 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP

    The production of low-energy neutral oxygen beams by grazing-incidence neutralization

    Get PDF
    The Vanderbilt University neutral oxygen facility produces beams of low-energy neutral oxygen atoms by means of grazing-incidence collisions between ion beams and metal surfaces. Residual ions are reflected by applied electric fields. This method can utilize initial ion beams of either O(+) or O2(+) since a very large percentage of molecular oxygen ions are dissociated when they undergo grazing-incidence neutralization. The method of neutralization is applicable to low-energy beams and to all ions. Particular emphasis is on O and N2 beams for simulation of the low Earth orbit space environment. Since the beam is a pure O-neutral beam and since measurements of the interaction of the beam with solid surfaces are made spectroscopically, absolute reaction rates can be determined. The technique permits the beams to be used in conjunction with electron and photon irradiation for studies of synergistic effects. Comparisons of optical spectra of Kapton excited by 2.5-keV O, O(+), and O2(+) show significant differences. Optical spectra of Kapton excited by neutral oxygen beams of less than 1 keV have been recorded

    Optical radiation from the interaction of energetic atoms, ions, electrons, and photons with surfaces

    Get PDF
    Heavy particle, electron, and UV photon bombardment of solid surfaces has been recently observed to result in the emission of infrared, visible, and ultraviolet radiation. This effect occurs over a wide range of incident projectile energies. Line radiation arising from transitions between discrete atomic or molecular levels may be attributed to the decay of excited particles which have been sputtered or electronically/chemically desorbed from the surface. Broadband continuum radiation, which is also observed, is believed to arise either from fluorescence of the near surface bulk or from the radiative decay of desorbed excited clusters. Spacecraft, in the ambient near Earth environment, are subject to such bombardment. The dynamics of energetic particle and photon beam interactions with surfaces which lead to surface erosion and glow phenomena will be treated. In addition, projected experimental and theoretical studies of oxygen and nitrogen beam surface interactions on materials characteristic of spacecraft surfaces will be discussed

    Improving C2 Effectiveness Based on Robust Connectivity

    Get PDF
    This chapter describes an approach to develop an improved metric for network effectiveness through the use of Cares\u27 (2005) Information Age Combat Model (IACM) as a context for combat (or competition) between networked forces. The IACM highlights the inadequacy of commonly used quantifiable metrics with regards to comparing networks that differ only by the placement of a few links. An agent-based simulation is used to investigate the potential value of the Perron-Frobenius Eigenvalue (λPFE) as an indicator of network effectiveness. The results validate this assumption. Another measurement is proven to be equally important, namely the robustness of a configuration. Potential applications from the domain of ballistic missile defense are included to show operational relevance

    Neutralizer and sample chamber for the Atomic Oxygen Simulation System (AOSS)

    Get PDF
    A neutralizer system capable of converting a beam of oxygen ions (O(+) or O2(+)) into a beam of low-energy neutral oxygen atoms (O) was developed. The neutralizer system is to be designed to be compatible with the Atomic Oxygen Simulation System (AOSS) located in the Physical Science Branch of MSFC. The Center for Molecular and Atomic Studies at Surfaces (CMASS) at Vanderbilt University has met these objectives by developing a system that neutralizes the ions through electron transfer during a grazing-incidence reflection of an ion beam from a smooth nickel surface. The purpose is to describe the system, provide schematic representations of the system, and to discuss the use of the system in relation to the AOSS at the Physical Science Branch of MSFC

    Modelling representation errors of atmospheric CO2 mixing ratios at a regional scale

    Get PDF
    Inverse modelling of carbon sources and sinks requires an accurate quality estimate of the modelling framework to obtain a realistic estimate of the inferred fluxes and their uncertainties. So-called "representation errors" result from our inability to correctly represent point observations with simulated average values of model grid cells. They may add substantial uncertainty to the interpretation of atmospheric CO2 mixing ratio data. We simulated detailed variations in the CO2 mixing ratios with a high resolution (2 km) mesoscale model (RAMS) to estimate the representation errors introduced at larger model grid sizes of 10 100 km. We found that meteorology is the main driver of representation errors in our study causing spatial and temporal variations in the error estimate. Within the nocturnal boundary layer, the representation errors are relatively large and mainly caused by unresolved topography at lower model resolutions. During the day, convective structures, mesoscale circulations, and surface CO2 flux variability were found to be the main sources of representation errors. Interpreting observations near a mesoscale circulation as representative for air with the correct footprint relative to the front can reduce the representation error substantially. The remaining representation error is 0.5 1.5 ppm at 20 100 km resolution

    Reconfiguration and dissociation of bonded hydrogen in silicon by energetic ions

    Get PDF
    We report in situ infrared measurements of ion-induced reconfiguration and dissociation of bonded hydrogen associated with various defects in silicon at low temperatures. Defect-associated Si-H complexes were prepared by low-temperature proton implantation in silicon followed by room-temperature annealing. As a result of subsequent low-temperature (3)He ion irradiation, we observed (1) ion-induced dissociation of Si-H complexes, (2) a notable difference in the dissociation rate of interstitial- and vacancy-type defects, and, unexpectedly, (3) the growth of bond-centered hydrogen, which is generally observed in association with low-temperature proton implantation. These findings provide insight into the mechanisms responsible for the dissociation of hydrogen bonds in silicon and thus have important implications for bond-selective nanoscale engineering and the long-term reliability of state-of-the-art silicon semiconductor and photovoltaic devices

    Combining Green Metrics and Digital Twins for Sustainability Planning and Governance of Smart Buildings and Cities

    Get PDF
    Creating a more sustainable world will require a coordinated effort to address the rise of social, economic, and environmental concerns resulting from the continuous growth of cities. Supporting planners with tools to address them is pivotal, and sustainability is one of the main objectives. Modeling and simulation augmenting digital twins can play an important role to implement these tools. Although various green best practices have been utilized over time and there are related attempts at measuring green success, works in the published literature tend to focus on addressing a single problem (e.g., energy efficiency), and a comprehensive approach that takes the multiple facets of sustainable urban planning into consideration has not yet been identified. This paper begins with a review of recent research efforts in green metrics and digital twins. This leads to developing an approach that evaluates organizational green best practices to derive metrics, which are used for computational decision support by digital twins. Furthermore, it leverages these research results and proposes a metric-driven framework for sustainability planning that understands a city as a sociotechnical complex system. Such a framework allows the practitioner to take advantage of recent developments and provides computational decision support for the complex challenge of sustainability planning at the various levels of urban planning and governance

    Coherent Magnetization Precession in GaMnAs induced by Ultrafast Optical Excitation

    Full text link
    We use femtosecond optical pulses to induce, control and monitor magnetization precession in ferromagnetic Ga0.965Mn0.035As. At temperatures below ~40 K we observe coherent oscillations of the local Mn spins, triggered by an ultrafast photoinduced reorientation of the in-plane easy axis. The amplitude saturation of the oscillations above a certain pump intensity indicates that the easy axis remains unchanged above ~TC/2. We find that the observed magnetization precession damping (Gilbert damping) is strongly dependent on pump laser intensity, but largely independent on ambient temperature. We provide a physical interpretation of the observed light-induced collective Mn-spin relaxation and precession.Comment: 7 pages,3 figure
    corecore