36 research outputs found

    Transmissivity of aquifer by capture zone method : an application in the Sete Lagoas Karst aquifer, MG, Brazil.

    Get PDF
    Transmissivity is an important hydraulic parameter to determine the amount of water passed horizontally across a given saturated thickness of an aquifer. The techniques to quantify this parameter, such as grain size analyses or pumping tests, can have limitations of time/spatial scale, viability, or economically. One technique that can be used, but little adopted, is the capture zone analysis. In this paper, capture zone analytical equations were used to estimate transmissivity values in order to verify the effectiveness of this methodology as alternative in situations where other traditional methods present implementation difficulties. The results were compared with field data estimated by aquifer tests conducted in the same region. A sensitivity analysis was also performed to identify possible discrepancies between the analytical and field data results. The aquifer studied was the Sete Lagoas Karst Aquifer in the urban region of the municipality of Sete Lagoas, Brazil. The method proved to be a viable and economical tool, where the analytical values compared to the aquifer tests showed similarities, being confirmed by a sensitivity analysis. However, a reliable potentiometric surface map, which enables the identification of the parameters for analytical capture zone equations, is needed

    Field evidence of a natural capillary barrier in a gravel alluvial aquifer

    Get PDF
    Ozark streams commonly feature “composite” floodplains, in which the vadose zone consists of silt or silt loam soils (?1 m thick) overlying gravel subsoil. Previous work has shown that preferential flow paths can exist within the gravel subsoil, which can conduct water and P at rates exceeding the sorption capacity of the gravel. At a site on Barren Fork Creek, a 1- by 1-m infiltration plot was constructed and an infiltration experiment was performed using sequentially introduced solutes including P (the constituent of regulatory interest), Rhodamine-WT (Rh-WT, a visual tracer), and Cl− (an electrical tracer). The solute transport was measured with monitoring wells (MWs) placed 1 m from the plot boundary and 5 m down the groundwater flow gradient using an electrical resistivity imaging (ERI) array. The ERI method utilized differences between a pre-infiltration background image and subsequent temporal images taken during the test to quantify changes induced by the tracers. The infiltration test maintained a steady-state flow rate of 4.5 L min−1 for 84.75 h. Electrical resistivity imaging data showed significant changes in resistivity induced by the tracers within the soil vadose zone under the plot but no similar changes within the gravel, indicating that the interface was acting as a capillary barrier. Electrical resistivity images 5 m away from the plot showed tracer breakthrough into the gravel in areas not sampled by the MWs. Solute detection was limited in MWs, indicating that MWs could not adequately monitor movement below the capillary barrier because it controlled migration of solute to the heterogeneous phreatic zone

    Framing a Public Issue for Extension: Challenges in Oil and Gas Activity

    Get PDF
    Extension professionals may be pointed towards controversial and contentious public issues. Oil and gas issues, such as hydraulic fracturing, are a challenge for Extension in many states. Public policy education is a tested method that helps Extension professionals maintain credibility and relevance. The professional can help assist communities that are divided and unable to find common ground. This article applies public policy education to oil and gas activity, including hydraulic fracturing

    PREFERENTIAL FLOW EFFECTS ON SUBSURFACE CONTAMINANT TRANSPORT IN ALLUVIAL FLOODPLAINS

    Get PDF
    For sorbing contaminants, transport from upland areas to surface water systems is typically considered to be due to surface runoff, with negligible input from subsurface transport assumed. However, certain conditions can lead to an environment where subsurface transport to streams may be significant. The Ozark region, including parts of Oklahoma, Arkansas, and Missouri, is one such environment, characterized by cherty, gravelly soils and gravel bed streams. Previous research identified a preferential flow path (PFP) at an Ozark floodplain along the Barren Fork Creek in northeastern Oklahoma and demonstrated that even a sorbing contaminant, i.e., phosphorus, can be transported in significant quantities through the subsurface. The objective of this research was to investigate the connectivity and floodplain-scale impact of subsurface physical heterogeneity (i.e., PFPs) on contaminant transport in alluvial floodplains in the Ozarks. This research also evaluated a hypothesis that alluvial groundwater acts as a transient storage zone, providing a contaminant sink during high stream flow and a contaminant source during stream baseflow. The floodplain and PFP were mapped with two electrical resistivity imaging techniques. Low-resistivity features (i.e., less than 200 Ω-m) corresponded to topographical depressions on the floodplain surface, which were hypothesized to be relict stream channels with fine sediment (i.e., sand, silt, and clay) and gravel deposits. The mapped PFP, approximately 2 m in depth and 5 to 10 m wide, was a buried gravel bar with electrical resistivity in the range of 1000 to 5000 Ω-m. To investigate the PFP, stream, and groundwater dynamics, a constant-head trench test was installed with a conservative tracer (Rhodamine WT) injected into the PFP at approximately 85 mg/L for 1.5 h. Observation wells were installed along the PFP and throughout the floodplain. Water table elevations were recorded real-time using water level loggers, and water samples were collected throughout the experiment. Results of the experiment demonstrated that stream/aquifer interaction was spatially non-uniform due to floodplain-scale heterogeneity. Transport mechanisms included preferential movement of Rhodamine WT along the PFP, infiltration of Rhodamine WT into the alluvial groundwater system, and then transport in the alluvial system as influenced by the floodplain-scale stream/aquifer dynamics. The electrical resistivity data assisted in predicting the movement of the tracer in the direction of the mapped preferential flow pathway. Spatially variable PFPs, even in the coarse gravel subsoils, affected water level gradients and the distribution of tracer into the shallow groundwater system

    The hydraulic conductivity structure of gravel-dominated vadose zones within alluvial floodplains

    Get PDF
    The floodplains of many gravel-bed streams have a general stratigraphy that consists of a layer of topsoil covering gravel-dominated subsoil. Previous research has demonstrated that this stratigraphy can facilitate preferential groundwater flow through focused linear features, such as paleochannels, or gravelly regions within the vadose zone. These areas within the floodplain vadose zone may provide a route for interactions between the floodplain surface and alluvial groundwater, effectively extending the hyporheic zone across the floodplain during high stream stage. The objective of this research was to assess the structure and scale of texture heterogeneity within the vadose zone within the gravel subsoils of alluvial floodplains using resistivity data combined with hydraulic testing and sediment sampling of the vadose zone. Point-scale and broad-scale methodologies in combination can help us understand spatial heterogeneity in hydraulic conductivity without the need for a large number of invasive hydraulic tests. The evaluated sites in the Ozark region of the United States were selected due to previous investigations indicating that significant high conductivity flow zones existed in a matrix which include almost no clay content. Data indicated that resistivity corresponded with the fine content in the vadose zone and subsequently corresponds to the saturated hydraulic conductivity. Statistical analysis of resistivity data, and supported by data from the soil sampling and permeameter hydraulic testing, identified isolated high flow regions and zones that can be characterized as broad-scale high hydraulic conductivity features with potentially significant consequences for the migration of water and solutes and therefore are of biogeochemical and ecological significance

    Stage-dependent transient storage of phosphorus in alluvial floodplains

    Get PDF
    Models for contaminant transport in streams commonly idealize transient storage as a well-mixed but immobile system. These transient storage models capture rapid (near-stream) hyporheic storage and transport, but do not account for large-scale, stage-dependent interaction with the alluvial aquifer. The objective of this research was to document transient storage of phosphorus (P) in coarse gravel alluvium potentially influenced by large-scale, stage-dependent preferential flow pathways (PFPs). Long-term monitoring was performed at floodplain sites adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping which was correlated to hydraulic conductivity data, observation wells were installed both in higher hydraulic conductivity and lower hydraulic conductivity subsoils. Water levels in the wells were monitored over time, and water samples were obtained from the observation wells and the stream to document P concentrations at multiple times during high flow events. Contour plots indicating direction of flow were developed using water table elevation data. Contour plots of total P concentrations showed the alluvial aquifer acting as a transient storage zone, with P-laden stream water heterogeneously entering the aquifer during the passage of a storm pulse, and subsequently re-entering the stream during baseflow conditions. Some groundwater in the alluvial floodplains had total P concentrations that mirrored the streams’ total P concentrations. A detailed analysis of P forms indicated that particulate P (i.e. P attached to particulates greater than 0·45 ÎŒm) was a significant portion of the P transport. This research suggests the need for more controlled studies on stage-dependent transient storage in alluvial systems

    Evaluating the impacts of oil and gas activity: Hydraulic fracturing in selected Oklahoma counties

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Stage-dependent transient storage of phosphorus in alluvial floodplains

    Get PDF
    Models for contaminant transport in streams commonly idealize transient storage as a well-mixed but immobile system. These transient storage models capture rapid (near-stream) hyporheic storage and transport, but do not account for large-scale, stage-dependent interaction with the alluvial aquifer. The objective of this research was to document transient storage of phosphorus (P) in coarse gravel alluvium potentially influenced by large-scale, stage-dependent preferential flow pathways (PFPs). Long-term monitoring was performed at floodplain sites adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping which was correlated to hydraulic conductivity data, observation wells were installed both in higher hydraulic conductivity and lower hydraulic conductivity subsoils. Water levels in the wells were monitored over time, and water samples were obtained from the observation wells and the stream to document P concentrations at multiple times during high flow events. Contour plots indicating direction of flow were developed using water table elevation data. Contour plots of total P concentrations showed the alluvial aquifer acting as a transient storage zone, with P-laden stream water heterogeneously entering the aquifer during the passage of a storm pulse, and subsequently re-entering the stream during baseflow conditions. Some groundwater in the alluvial floodplains had total P concentrations that mirrored the streams’ total P concentrations. A detailed analysis of P forms indicated that particulate P (i.e. P attached to particulates greater than 0·45 ÎŒm) was a significant portion of the P transport. This research suggests the need for more controlled studies on stage-dependent transient storage in alluvial systems

    Monitoring pumping test response in a fractured aquifer using ground-penetrating radar

    Get PDF
    This is the published version. Copyright 2010 by the American Geophysical Union. All rights reserved.Fractured aquifers present a number of problems when attempting to characterize flow on the well scale (less than 100 m). Standard hydraulic testing methods are expensive because of the need for installation of monitoring wells. Geophysical methods may suffer from a lack of resolution and nonunique solutions to data interpretation. We used ground-penetrating radar (GPR) surveying during a pumping test in a well-characterized, fractured, carbonate aquifer to monitor the response of a permeable subhorizontal fracture plane. We observed radar signal amplitude and waveform variations along a fracture reflector and correlated the radar signal response to changes in the water saturation of the fracture. Combining hydraulic measurements with GPR data and electromagnetic modeling, we identified an asymmetric fracture drainage pattern, provided accurate spatial information about the saturation of the fracture, and detected the presence of hydraulic boundaries. This study demonstrates that GPR surveying can be used successfully for real-time monitoring of pumping tests in fractured carbonate aquifers
    corecore