37 research outputs found

    Increased levels of anti-glycan antibodies in patients with cystic fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of Crohn's disease (CD) is increased in patients with cystic fibrosis (CF). Anti-Saccharomyces cerevisiae antibodies (ASCA) have been suggested as a screening tool to detect CD in CF. Recently, several new anti-glycan antibodies have been reported in CD.</p> <p>Materials and methods</p> <p>The sera of 119 CF patients of various age groups were prospectively screened for ASCA type IgG (gASCA), anti-laminaribioside carbohydrate IgG antibodies (ALCA), anti-chitobioside carbohydrate IgA antibodies (ACCA), and anti-mannobioside carbohydrate IgG antibodies (AMCA). The frequency of these anti-glycan antibodies was then compared in patients with CD, ulcerative colitis, rheumatoid arthritis and healthy volunteers.</p> <p>Results</p> <p>A significant number of CF patients were positive for gASCA (51.3% [41.6-60.6]) and up to three other anti-glycan antibodies concurrently. Serum levels of anti-glycan antibodies in CF and CD were not related to parameters of inflammation. Despite the well-documented difference in clinical course between male and female CF patients no gender difference of anti-glycan antibodies was found. In contrast, there was a significant positive correlation between anti-glycan markers and age in CF patients.</p> <p>Conclusions</p> <p>Our findings demonstrate for the first time the increased frequency of a panel of anti-glycan antibodies in CF and provide a link between the presence of these serological biomarkers and patient's age. Anti-glycan antibody profiling may therefore become a valuable tool in the care of patients with CF.</p

    Sequential analysis of surfactant, lung function and inflammation in cystic fibrosis patients

    Get PDF
    BACKGROUND: In a cross-sectional analysis of cystic fibrosis (CF) patients with mild lung disease, reduced surfactant activity was correlated to increased neutrophilic airway inflammation, but not to lung function. So far, longitudinal measurements of surfactant function in CF patients are lacking and it remains unclear how these alterations relate to the progression of airway inflammation as well as decline in pulmonary function over time. METHODS: As part of the BEAT trial, a longitudinal study to assess the course of airway inflammation in CF, we studied lung function, surfactant function and endobronchial inflammation using bronchoalveolar lavage fluid from 20 CF patients with normal pulmonary function (median FEV(1 )94% of predicted) at three times over a three year period. RESULTS: There was a progressive loss of surfactant function, assessed as minimal surface tension. The decline in surfactant function was negatively correlated to an increase in neutrophilic inflammation and a decrease in lung function, assessed by FEV(1), MEF(75/25%VC), and MEF(25%VC). The concentrations of the surfactant specific proteins A, C and D did not change, whereas SP-B increased during this time period. CONCLUSION: Our findings suggest a link between loss of surfactant function driven by progressive airway inflammation and loss of small airway function in CF patients with limited lung disease

    Tailor-made inflammation: how neutrophil serine proteases modulate the inflammatory response

    Get PDF
    Neutrophil granulocytes are important mediators of innate immunity, but also participate in the pathogenesis of (auto)inflammatory diseases. Neutrophils express a specific set of proteolytic enzymes, the neutrophil serine proteases (NSPs), which are stored in cytoplasmic granules and can be secreted into the extra- and pericellular space upon cellular activation. These NSPs, namely cathepsin G (CG), neutrophil elastase (NE), and proteinase 3 (PR3), have early been implicated in bacterial defense. However, NSPs also regulate the inflammatory response by specifically altering the function of cytokines and chemokines. For instance, PR3 and NE both inactivate the anti-inflammatory mediator progranulin, which may play a role in chronic inflammation. Here, we provide a concise update on NSPs as modulators of inflammation and discuss the biological and pathological significance of this novel function of NSPs. Mounting evidence support an important proinflammatory function for PR3, which may have been underestimated in the past

    Hair analysis following chronic smoked-drugs-of-abuse exposure in adults and their toddler: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Over the past two decades, the study of chronic cocaine and crack cocaine exposure in the pediatric population has been focused on the potential adverse effects, especially in the prenatal period and early childhood. Non-invasive biological matrices have become an essential tool for the assessment of a long-term history of drug of abuse exposure.</p> <p>Case report</p> <p>We analyze the significance of different biomarker values in hair after chronic crack exposure in a two-year-old Caucasian girl and her parents, who are self-reported crack smokers. The level of benzoylecgonine, the principal metabolite of cocaine, was determined in segmented hair samples (0 cm to 3 cm from the scalp, and > 3 cm from the scalp) following washing to exclude external contamination. Benzoylecgonine was detectable in high concentrations in the child's hair, at 1.9 ng/mg and 7.04 ng/mg, respectively. Benzoylecgonine was also present in the maternal and paternal hair samples at 7.88 ng/mg and 6.39 ng/mg, and 13.06 ng/mg and 12.97 ng/mg, respectively.</p> <p>Conclusion</p> <p>Based on the data from this case and from previously published poisoning cases, as well as on the experience of our research group, we conclude that, using similar matrices for the study of chronic drug exposure, children present with a higher cocaine concentration in hair and they experience more serious deleterious acute effects, probably due to a different and slower cocaine metabolism. Consequently, children must be not exposed to secondhand crack smoke under any circumstance.</p

    Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cystic fibrosis (CF) is caused by mutations in the <it>CFTR </it>gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl<sup>- </sup>channel, would improve the intestinal phenotype in CF mice.</p> <p>Methods</p> <p><it>Cftr<sup>tm1UNC </sup></it>(CF) and wildtype (WT) littermate mice on the C57BL/6J background were used. Lubiprostone (10 μg/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16<it>S </it>gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR.</p> <p>Results</p> <p>Crypt width in control CF mice was 700% that of WT mice (<it>P </it>< 0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (<it>P </it>= 0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (<it>P </it>= 0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (<it>P </it>= 0.005). Lubiprostone increased gastric emptying at 20 min postgavage in both WT (<it>P </it>< 0.001) and CF mice (<it>P </it>< 0.001). Lubiprostone enhanced small intestinal transit in WT mice (<it>P </it>= 0.024) but not in CF mice (<it>P </it>= 0.377). Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels.</p> <p>Conclusions</p> <p>These results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice suggests the possibility that lubiprostone increases mucus secretion.</p

    The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis

    Get PDF
    OBJECTIVE: To meta-analyse the diagnostic accuracy of US, CT, MRI and (1)H-MRS for the evaluation of hepatic steatosis. METHODS: From a comprehensive literature search in MEDLINE, EMBASE, CINAHL and Cochrane (up to November 2009), articles were selected that investigated the diagnostic performance imaging techniques for evaluating hepatic steatosis with histopathology as the reference standard. Cut-off values for the presence of steatosis on liver biopsy were subdivided into four groups: (1) >0, >2 and >5% steatosis; (2) >10, >15 and >20%; (3) >25, >30 and >33%; (4) >50, >60 and >66%. Per group, summary estimates for sensitivity and specificity were calculated. The natural-logarithm of the diagnostic odds ratio (lnDOR) was used as a single indicator of test performance. RESULTS: 46 articles were included. Mean sensitivity estimates for subgroups were 73.3-90.5% (US), 46.1-72.0% (CT), 82.0-97.4% (MRI) and 72.7-88.5% ((1)H-MRS). Mean specificity ranges were 69.6-85.2% (US), 88.1-94.6% (CT), 76.1-95.3% (MRI) and 92.0-95.7% ((1)H-MRS). Overall performance (lnDOR) of MRI and (1)H-MRS was better than that for US and CT for all subgroups, with significant differences in groups 1 and 2. CONCLUSION: MRI and (1)H-MRS can be considered techniques of choice for accurate evaluation of hepatic steatosi

    Super-silent FRET Sensor Enables Live Cell Imaging and Flow Cytometric Stratification of Intracellular Serine Protease Activity in Neutrophils

    Get PDF
    Abstract Serine proteases are released by neutrophils to act primarily as antimicrobial proteins but excessive and unbalanced serine protease activity results in serious host tissue damage. Here the synthesis of a novel chemical sensor based on a multi-branched fluorescence quencher is reported. It is super-silent, exhibiting no fluorescence until de-quenched by the exemplar serine protease human neutrophil elastase, rapidly enters human neutrophils, and is inhibited by serine protease inhibitors. This sensor allows live imaging of intracellular serine protease activity within human neutrophils and demonstrates that the unique combination of a multivalent scaffold combined with a FRET peptide represents a novel and efficient strategy to generate super-silent sensors that permit the visualisation of intracellular proteases and may enable point of care whole blood profiling of neutrophils
    corecore