20 research outputs found
Phenethyl isothiocyanate exhibits antileukemic activity in vitro and in vivo by inactivation of Akt and activation of JNK pathways
Effects of phenethyl isothiocyanate (PEITC) have been investigated in human leukemia cells (U937, Jurkat, and HL-60) as well as in primary human acute myeloid leukemia (AML) cells in relation to apoptosis and cell signaling events. Exposure of cells to PEITC resulted in pronounced increase in the activation of caspase-3, -8, -9, cleavage/degradation of PARP, and apoptosis in dose- and time-dependent manners. These events were accompanied by the caspase-independent downregulation of Mcl-1, inactivation of Akt, as well as activation of Jun N-terminal kinase (JNK). Inhibition of PI3K/Akt by LY294002 significantly enhanced PEITC-induced apoptosis. Conversely, enforced activation of Akt by a constitutively active Akt construct markedly abrogated PEITC-mediated JNK activation, Mcl-1 downregulation, caspase activation, and apoptosis, and also interruption of the JNK pathway by pharmacological or genetically (e.g., siRNA) attenuated PEITC-induced apoptosis. Finally, administration of PEITC markedly inhibited tumor growth and induced apoptosis in U937 xenograft model in association with inactivation of Akt, activation of JNK, as well as downregulation of Mcl-1. Taken together, these findings represent a novel mechanism by which agents targeting Akt/JNK/Mcl-1 pathway potentiate PEITC lethality in transformed and primary human leukemia cells and inhibitory activity of tumor growth of U937 xenograft model
Antiviral potential of 3′-sialyllactose- and 6′-sialyllactose-conjugated dendritic polymers against human and avian influenza viruses
Visualization of early influenza A virus trafficking in human dendritic cells using STED microscopy
Effect of Fatigue Training on Safety, Fatigue, and Sleep in Emergency Medical Services Personnel and Other Shift Workers: A Systematic Review and Meta-Analysis
TMPRSS2 Isoform 1 Activates Respiratory Viruses and Is Expressed in Viral Target Cells
The cellular protease TMPRSS2 cleaves and activates the influenza virus hemagglutinin (HA) and TMPRSS2 expression is essential for viral spread and pathogenesis in mice. Moreover, severe acute respiratory syndrome coronavirus (SARS-CoV) and other respiratory viruses are activated by TMPRSS2. However, previous studies on viral activation by TMPRSS2 focused on a 492 amino acids comprising form of the protein (isoform 2) while other TMPRSS2 isoforms, generated upon alternative splicing of the tmprss2 mRNA, have not been characterized. Here, we show that the mRNA encoding a TMPRSS2 isoform with an extended N-terminal cytoplasmic domain (isoform 1) is expressed in lung-derived cell lines and tissues. Moreover, we demonstrate that TMPRSS2 isoform 1 colocalizes with HA and cleaves and activates HA. Finally, we show that isoform 1 activates the SARS-CoV spike protein for cathepsin L-independent entry into target cells. Our results indicate that TMPRSS2 isoform 1 is expressed in viral target cells and might contribute to viral activation in the host
