37 research outputs found

    High levels of genetic differentiation and selfing in the Brazilian cerrado fruit tree Dipteryx alata Vog. (Fabaceae)

    Get PDF
    Dipteryx alata is a native fruit tree species of the cerrado (Brazilian savanna) that has great economic potential because of its multiple uses. Knowledge of how the genetic variability of this species is organized within and among populations would be useful for genetic conservation and breeding programs. We used nine simple sequence repeat (SSR) primers developed for Dipteryx odorata to evaluate the genetic structure of three populations of D. alata located in central Brazil based on a leaf sample analysis from 101 adults. The outcrossing rate was evaluated using 300 open-pollinated offspring from 25 seed-trees. Pollen dispersal was measured by parentage analysis. We used spatial genetic structure (SGS) to test the minimal distance for harvesting seeds in conservation and breeding programs. Our data indicate that the populations studied had a high degree of genetic diversity and population structure, as suggested by the high level of divergence among populations . The estimated outcrossing rate suggested a mixed mating system, and the intrapopulation fixation index was influenced by SGS. We conclude that seed harvesting for genetic conservation and breeding programs requires a minimum distance between trees of 196 m to avoid collecting seeds from related seed-trees

    Topical rapamycin inhibits tuberous sclerosis tumor growth in a nude mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skin manifestations of Tuberous Sclerosis Complex (TSC) cause significant morbidity. The molecular mechanism underlying TSC is understood and there is evidence that systemic treatment with rapamycin or other mTOR inhibitors may be a useful approach to targeted therapy for the kidney and brain manifestations. Here we investigate topical rapamycin in a mouse model for TSC-related tumors.</p> <p>Methods</p> <p>0.4% and 0.8% rapamycin ointments were applied to nude mice bearing subcutaneous, TSC-related tumors. Topical treatments were compared with injected rapamycin and topical vehicle. Rapamycin levels in blood and tumors were measured to assess systemic drug levels in all cohorts.</p> <p>Results</p> <p>Treatment with topical rapamycin improved survival and reduced tumor growth. Topical rapamycin treatment resulted in systemic drug levels within the known therapeutic range and was not as effective as injected rapamycin.</p> <p>Conclusion</p> <p>Topical rapamycin inhibits TSC-related tumor growth. These findings could lead to a novel treatment approach for facial angiofibromas and other TSC skin lesions.</p

    Human EHMT2/G9a activates p53 through methylation-independent mechanism

    Full text link
    p53 is a critical tumor suppressor in humans. It functions mostly as a transcriptional factor and its activity is regulated by numerous post-translational modifications. Among different covalent modifications found on p53 the most controversial one is lysine methylation. We found that human G9a (hG9a) unlike its mouse orthologue (mG9a) potently stimulated p53 transcriptional activity. Both ectopic and endogenous hG9a augmented p53-dependent transcription of pro-apoptotic genes, including Bax and Puma, resulting in enhanced apoptosis and reduced colony formation. Significantly, shRNA-mediated knockdown of hG9a attenuated p53-dependent activation of Puma. On the molecular level, hG9a interacted with histone acetyltransferase, p300/CBP, resulting in increased histone acetylation at the promoter of Puma. The bioinformatics data substantiated our findings showing that positive correlation between G9a and p53 expression is associated with better survival of lung cancer patients. Collectively, this study demonstrates that depending on the cellular and organismal context, orthologous proteins may exert both overlapping and opposing functions. Furthermore, this finding has important ramifications on the use of G9a inhibitors in combination with genotoxic drugs to treat p53-positive tumors.Oncogene advance online publication, 25 July 2016; doi:10.1038/onc.2016.258

    Gingival fibromatosis: clinical, molecular and therapeutic issues

    Full text link
    corecore