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Abstract

Metabolic reprogramming is a key event in tumorigenesis to support cell growth, and cancer cells frequently
become both highly glycolytic and glutamine dependent. Similarly, T lymphocytes (T cells) modify their metabolism
after activation by foreign antigens to shift from an energetically efficient oxidative metabolism to a highly
glycolytic and glutamine-dependent metabolic program. This metabolic transition enables T cell growth,
proliferation, and differentiation. In both activated T cells and cancer cells metabolic reprogramming is achieved by
similar mechanisms and offers similar survival and cell growth advantages. Activated T cells thus present a useful
model with which to study the development of tumor metabolism. Here, we review the metabolic similarities and
distinctions between activated T cells and cancer cells, and discuss both the common signaling pathways and
master metabolic regulators that lead to metabolic rewiring. Ultimately, understanding how and why T cells adopt
a cancer cell-like metabolic profile may identify new therapeutic strategies to selectively target tumor metabolism
or inflammatory immune responses.
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Review
The mid-twentieth century has been described as the
‘golden age of intermediary metabolism’ [1], with the work
of Krebs, Lippman, Crane and others greatly advancing
our understanding of cellular metabolic pathways. In the
past decade interest in cell metabolism has been rej-
uvenated in several fields, especially cancer biology and
lymphocyte immunology. In cancer biology, this renais-
sance has been driven by evidence that cancer metabolism
presents an underexploited therapeutic target. Immuno-
logists have been drawn to metabolic studies with the
realization that the metabolism of T lymphocytes (T cells)
is intimately tied to immunity [2]. Functionally, T cells and
tumors have little in common; the former protects against
invasive pathogens, the latter is a diseased tissue charac-
terized by the accumulation of abnormal cells. However,
both T cells and cancer cells have strong proliferative sig-
nals and undergo metabolic reprogramming during their
respective life cycles, and there exist clear functional and
mechanistic similarities between the reprogramming events
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in each cell type. These similarities make lymphocyte meta-
bolic reprogramming a useful model with which to discover
how and why tumors rewire their metabolism. The purpose
of this review is to highlight and discuss the similarities and
distinctions in how T cells and tumor cells solve similar
metabolic problems.
T lymphocyte activation: a key lifestyle switch
Because of its inherently destructive nature, the immune
system must be maintained in a quiescent state. To pro-
vide protection from pathogens, however, it must remain
capable of rapid responses and effector function. This
challenge is solved with a diverse pool of naïve lympho-
cytes that can quickly activate to produce a large, clonal
pool of rapidly proliferating effector T cells. Naïve T cells
express near-unique T cell antigen receptors (TCR) that
are randomly generated through V(D)J recombination
and pre-selected to recognize foreign antigens presented
on major histocompatibility complexes (MHC). These
naïve cells continually circulate the blood and lymphatic
system sampling MHC-peptide complexes. Upon en-
counter with an antigen-presenting cell (APC) and cog-
nate antigen, the T cell ceases to migrate, forming a
prolonged contact with the APC. This induces sustained
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signaling through the TCR and other co-receptors, indu-
cing T cell activation, proliferation and differentiation
into effector cells. These effectors rapidly accumulate
and migrate to sites of inflammation, ultimately clearing
the invader [3].
Activation therefore simultaneously places T cells under

several types of stress: they must proliferate rapidly; they
must synthesize large amounts of effector proteins; and
they have to prepare to enter a heterogeneous and poten-
tially hypoxic, nutrient poor environment. Each of these
stressors has a significant metabolic aspect reminiscent of
the classic cancer metabolism paradigm: proliferation and
anabolism require energy, biosynthetic building blocks and
reducing equivalents, while nutrient stress and hypoxia
both potentially limit metabolic flux by restricting metabol-
ite access and oxygen. With similar metabolic demands
and stresses, it is not surprising that these diverse cell types
respond by adopting a similar metabolic profile.

A common metabolic solution: aerobic glycolysis
Three metabolic pathways are central to ATP produc-
tion in proliferative lymphocytes and cancer cells: gly-
colysis, the tri-carboxylic acid (TCA) cycle and oxidative
phosphorylation (OXPHOS). While the TCA cycle does
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Figure 1 Major metabolic fates of glucose in highly proliferative cells
phosphorylated by hexokinases, trapping it within the cell as glucose-6-phosp
donor for the synthesis of riboses via the pentose phosphate pathway (PPP). C
much of the resultant pyruvate being converted to lactate by lactate dehydro
The remaining pyruvate is converted to acetyl-CoenzymeA (acetyl-CoA) by py
tri-carboxylic acid (TCA) cycle and oxidative phosphorylation or converted to
and the TCA cycle reaction intermediates can be removed to provide carbon
not directly generate ATP, it is inexorably linked to
OXPHOS, providing several metabolic inputs to drive
ATP production. In addition, intermediate metabolites
from both the TCA cycle and glycolysis can be used as
carbon sources for catabolic pathways producing choles-
terol, lipids, ribose, and other biosynthetic molecules
(Figure 1) [4]. Resting or non-proliferative cells often
rely on mitochondrial lipid β-oxidation. Proliferative
cells, in contrast, generally decrease lipid oxidation and
instead conserve lipids to support cell growth [5].
For mammalian cells that lack significant intracellular

nutrient stores, extracellular glucose uptake represents a
major carbon and energy source. Glucose is transported
through facilitative glucose transporters and phosphory-
lated by hexokinases to initiate metabolic pathways and
prevent its exit. Glucose-6-phosphate (G6P) is primarily
metabolized through glycolysis or the pentose phosphate
pathway (PPP). Glycolysis provides a small net ATP gain
per glucose molecule consumed and yields pyruvate which
can then either be: i) reduced to lactate by lactate dehydro-
genase (LDH), concomitantly restoring NADH to NAD+,
ii) converted to alanine by alanine aminotransferase, si-
multaneously converting glutamine to α-ketoglutarate, or
iii) converted to acetyl-CoenzymeA (acetyl-CoA) in the
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. Glucose is taken into the cell by GLUT family transporters and then
hate (G6P). G6P can be catabolized via glycolysis or used as a carbon
atabolized G6P generates pyruvate plus small quantities of ATP, with
genase and then secreted through mono-carboxylic transporters (MCT).
ruvate dehydrogenase and used either as fuel for ATP production via the
fatty acids to generate structural lipids. At various points during glycolysis
for amino acid biosynthesis (not shown).
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mitochondria to be oxidized via the TCA cycle, generating
large amounts of ATP via OXPHOS (respiration). Most
non-proliferating cells utilize this latter pathway when oxy-
gen is available in a process termed the Pasteur effect.
Not all cells, however, exhibit the Pasteur effect and

cease lactate production under aerobic conditions. In the
early 20th century, Otto Warburg observed that many
tumor cells and tumor sections continued lactate secretion
in the presence of oxygen [6]. This metabolic program is
referred to as aerobic glycolysis, differentiating it from the
obligatory fermentation of glucose to lactate that occurs
under anaerobic conditions where no oxygen is available
to fuel OXPHOS. Warburg postulated that the switch to-
wards aerobic glycolysis arose from faults in respiration
and that such defects were the primary cause of cancer
[6,7]. While his observations stand, his proposed mechan-
ism for aerobic glycolysis has now largely been discounted
following studies demonstrating that cancer cells often
have grossly normal respiratory function [8-10] and, in-
deed, can exhibit elevated rates of respiration [11]. Never-
theless, mitochondrial mutations are associated with some
cancers and the relationships between aerobic glycolysis,
mitochondrial function and tumorigenesis remain contro-
versial [12].
Similar to his observations of aerobic glycolysis in can-

cer cells, in 1958 Warburg also found that stimulated leu-
kocytes become highly glycolytic [13]. Subsequent reports
in the 1970s to 1990s, using lectin-stimulated rat thymo-
cytes and lymphocytes, also showed lymphocytes become
glycolytic upon activation. Together, these studies demon-
strated that resting lymphocytes obtain most of their ATP
by OXPHOS of glucose, amino acids, and lipids. However,
within hours of stimulation, lymphocytes begin to increase
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Figure 2 T cell activation results in metabolic reprogramming. Naïve T
fatty acids as fuel sources. The majority of ATP is generated via oxidative p
receptor and co-receptors, the cells adopt a metabolic profile that resembl
both glucose and glutamine but performing relatively little oxidative phosp
lactate, with the remainder being used for biosynthesis.
glucose uptake up to forty- or fifty-fold and to secrete
most of the glucose-liberated carbon as lactate [14]
(Figure 2). In parallel, lymphocytes increase oxygen con-
sumption by around 60% [15-19]. These data have subse-
quently been confirmed using purified T cell populations
stimulated with antibodies that trigger the TCR complex
and associated co-receptors [20,21]. Importantly, this in-
crease in aerobic glycolysis precedes and has been shown
to be essential for the growth and proliferation of stimu-
lated T cells [21-23].
Cancer cells and T cells are not metabolically unique,

and the induction of aerobic glycolysis has also been
reported during proliferation of other non-transformed
cells. For example, a similar phenotype is also observed
in both intestinal cells and fibroblasts during logarithmic
growth [4,24]. However, few other cell types have shown
such a distinct and acute induction of aerobic glycolysis
from a near proliferative and metabolic standstill. T cell
activation, therefore, provides a unique model to explore
how and why metabolic rewiring occurs in cancer cells.

Aerobic glycolysis supports rapid proliferation
The metabolic needs of T cells change dramatically upon
activation. Before encountering pathogens, resting T cells
require only sufficient energy to support basal cellular
needs and replacement biosynthesis. After activation, T
cells undergo a transient period with little cell growth
and then begin to rapidly grow and divide. T cells specific
for a given MHC-antigen complex are rare [25,26], so
clonal expansion must rapidly expand these small popu-
lations of hundreds of cells to the tens or hundreds of
millions of cells necessary for protection. Remarkably,
activated T cell doubling times of 4 to 6h have been
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observed in vitro [27], with even faster doubling rates
reported in vivo [28,29]. Activated T cells, therefore, have
a tremendous need for both ATP [30] and biosynthetic
capacity to synthesize new proteins, lipids, and nucleic
acids.
While a hallmark of cancer is cell cycle deregulation,

there is little propensity for tumor cells to adopt increas-
ingly rapid rates of cell division like activated T cells.
Indeed, the majority of cells within a solid tumor may be
in a state of G1 cell cycle arrest [31]. Extensive clinical
studies have shown that although cell cycle length in
tumors is more diverse than non-cancerous tissue, the
median S-phase length across all tumor types is around 10
h [32] and, counter-intuitively, there is no clear relation-
ship between proliferative ability and tumor aggressiveness
[33]. Still, proliferation of cancer cells must exceed cell
death to allow tumor growth. Thus, with the exception of
an alternate glycolytic pathway in which tumor cells may
bypass pyruvate kinase to convert phosphoenol pyruvate
to pyruvate, and yield no net gain of ATP [34], activated T
cells and tumor cells harness aerobic glycolysis to provide
ATP and biosynthesis for proliferation.

Advantages of aerobic glycolysis: rapid ATP production
In contrast to OXPHOS, glycolysis is energetically ineffi-
cient, theoretically yielding only two molecules of ATP per
glucose molecule consumed compared to up to thirty-six
if fully oxidized. This is not a trivial issue as cancer cells
have been shown to possess additional, unused respiratory
capacity [8,35,36]. Thus, cancer cells do not increase gly-
colysis solely because their capacity for OXPHOS is sa-
turated. Rather, aerobic glycolysis and basal OXPHOS
provide sufficient energy to support the cell survival and
growth demands of cancer cells and activated T cells.
One energetic advantage of adopting aerobic glycolysis

as a primary metabolic program is the speed at which
ATP can be regenerated. While OXPHOS yields more
ATP than glycolysis, there is a trade-off between yield
and speed [37,38]. Indeed, as described by Koppenol and
Bounds [39], Warburg and colleagues observed this phe-
nomena as early as 1923, reporting that for every one
molecule of glucose oxidized by respiration, twelve are
metabolized by glycolysis. Increased glycolysis can boost
ATP production rate by two-thirds, provided cells are
not concerned with efficiency. While wasteful, therefore,
the speed of aerobic glycolysis offers a selective advan-
tage both to tumor cells competing against other cells
within the same environment [37,40], and to T cells ra-
cing to suppress invading pathogens.

Advantages of aerobic glycolysis: biosynthesis
Beyond ATP production, glycolysis and the TCA cycle
form the nexus for many biosynthetic processes. Carbon
intermediates derived from glycolysis and the TCA cycle
are used for the generation of amino acids, lipids, chol-
esterol and nucleotides. A major function of aerobic gly-
colysis, therefore, is to provide sufficient intermediates
to fuel biosynthesis for proliferation and growth. Indeed,
increased glucose uptake can enhance T cell responses
and growth in vivo as mice transgenically overexpressing
the glucose transporter GLUT1 in T cells accumulate ef-
fector T cells with age [22,41] and GLUT1 overexpres-
sion is correlated with poor prognosis in a variety of
cancers [42].
Rapid glucose uptake fuels both glycolysis and the PPP,

each of which provides numerous metabolites to support
cell growth. Glycolysis is a major source of serine synthesis
as well as pyruvate that can either be converted to lactate
to replenish NAD+ or can be transported into the mito-
chondria to enter the TCA cycle as acetyl-CoA. From the
TCA cycle, citrate can exit to the cytosol to provide a basis
for lipid synthesis [21,43]. Under hypoxic conditions, glu-
tamine can undergo reductive carboxylation to provide a
reverse flow through the TCA cycle as a source of lipogen-
esis in both cancer cells and in CD8+ T cells [44]. Notably,
both tumor cells [45] and lectin-stimulated lymphocytes
[46,47] perform extensive de novo synthesis of lipids, and
only limited lipid β-oxidation. In addition to de novo lipo-
genesis, aggressive cancer cell lines and primary tumors
also perform extensive lipid remodeling, in part due to ele-
vated monoacylglycerol lipase activity [48]. Tumor lipid
metabolism can be further enhanced by Akt-driven expres-
sion of the low-density lipoprotein receptor (LDLR), which
increases cholesterol intake and promotes cell growth [49].
The relative importance of each of these pathways to
lymphocyte lipid metabolism has yet to be determined.
The PPP provides nicotinamide adenine dinucleotide

phosphate (NADPH) reducing potential and generates ri-
bose sugars that can be directed into TCA cycle inter-
mediates and into purine, pyrimidine and aromatic amino
acid synthesis pathways. The PPP are strongly induced in
T cell activation [21] and can be important in cancer; in-
deed U-C14 glucose tracer experiments have suggested
that in some tumor types over 80% of the nucleotides in
DNA and RNA are synthesized from glucose-derived car-
bon [50,51]. Upregulation of the PPP is facilitated, in part,
by increased enzyme expression. Activated T cells increase
expression of PPP enzymes and high levels of PPP enzyme
activity have been reported in metastatic tumor cells [52].
For example, glioblastoma expression of the transketolase
TKTL1, the key enzyme linking the PPP to glycolysis, dir-
ectly correlates with tumor severity in the clinic [53].
NADPH is a critical reducing agent in the synthesis of

fatty acids and cholesterol as well as maintaining cellular
redox status and control reactive oxygen species (ROS)
produced by OXPHOS [54]. While some degree of ROS is
beneficial for both T cell activation [55] and tumor devel-
opment [56], excessive ROS leads to oxidative organelle
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damage and the induction of apoptosis. Strategies that
drive cancer cells to increase the OXPHOS-glycolysis
ratio, for example by increasing pyruvate dehydrogenase
activity to drive mitochondrial conversion of pyruvate to
acetyl-CoA, decrease both proliferation and growth [57].
Similarly, glucose restriction of activated lymphocytes
induces an increase in OXPHOS, a drop in glycolysis, and
an inhibition of proliferation [20,58]. In proliferating cells
efficient OXPHOS should, therefore, be balanced by high
PPP flux to prevent overloading the demand for NADPH.

Advantages of aerobic glycolysis: adaptation to
the environment
Glycolysis and the TCA cycle are amphibolic and supply
both ATP and intermediates to multiple pathways to po-
tentially support cells under stress conditions. Indeed, we
have shown that high rates of glycolysis can be protective
against apoptosis [59,60]. A high rate of metabolic flux
makes it thermodynamically less costly to redirect inter-
mediates down different pathways, that is, high metabolic
flux permits rapid rerouting of metabolites [61-63]. This
control sensitivity may permit a faster response to specific
nutrient deprivation as cells enter potentially nutrient-
poor environments. This may explain why the rate of glu-
cose consumption in both activated T cells and many
tumor types appears in excess of that required to meet ei-
ther the biosynthetic or energetic demands of the cell [64].
Further, glycolysis is not oxygen dependent, and so

adopting a glycolytic metabolism can prepare cells for
entry or survival in a hypoxic environment. Even after
vascularization, solid tumors feature extensive hypoxic
domains [65]. Similarly, lymph nodes [66], spleen [67],
tumors, dermal/surgical wounds [68] and other regions
frequented by activated lymphocytes contain extensive
areas of low oxygen tension. Adaption of a highly glyco-
lytic metabolism with low oxygen dependency may help
both tumors and lymphocytes survive and proliferate
during low oxygen availability.

Common mechanisms drive glycolytic reprogramming in
T cells and tumors
Transporter expression and izozyme switching
A limiting step in glucose metabolism is the rate at which
glucose can be captured and trapped within the cell. There
are two major glucose transporter families, the Na+/glu-
cose linked transporter (SGLT) symporters, and the GLUT
family of passive transporters. Fourteen mammalian GLUT
family transporters have been identified [69] and the major
glucose transporters in lymphocytes appear to be GLUT1
and GLUT3, the expression levels of which increase signifi-
cantly following activation [70]. Facilitated diffusion of glu-
cose by the GLUTs requires a glucose gradient across the
extracellular membrane. This so-called glucose sink is
maintained by hexokinase phosphorylation of intracellular
glucose. Following T cell activation, hexokinase activity
increases significantly [71] and T cells undergo a switch in
HK isozyme expression from HKI to HKII [72,73]. While
both HKI and HKII both feature two potential catalytic
domains, in HKI one of these is non-functional, thus HKII
has a higher Km for both glucose and ATP compared to
HKI [74]. Second, signals from the TCR and co-receptors
drive HKI and HKII to bind mitochondria at porin (ATP-
exporting) complexes [75]. This close coupling of HK and
mitochondria provides HKII with access to a large pool
of ATP.
Following lectin stimulation, lymphocytes also switch

expression of other glycolytic isozymes. This includes in-
duction of pyruvate kinase M2 (PKM2), LDH-A4, and
enolase I [21,73]. These changes in expression are asso-
ciated with increases in maximal glycolytic enzyme activity
[16,72], and the relieving of allosteric inhibition that would
otherwise limit glycolytic flux. One example of this is the
regulation of the glycolytic enzyme 6-phosphofructo-1-
kinase (PFK1), a key regulatory enzyme in glycolysis
(Figure 3). PFK1 is allosterically inhibited by ATP and allos-
terically activated by fructose-2,6-bisphosphate (F26P2).
F26P2 is generated by the bifunctional enzyme 6-phospho-
fructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB), and
in naïve lymphocytes PFKFB isoform 2 predominates.
However, following activation T cells express large quan-
tities of PFKFB isoform 3 [76,77]. PFKFB3 has a very low
phosphatase activity compared to PFKFB2 [78], and so this
isozyme switch enhances PFK1 flux by both increasing
F26P2 and depleting ATP.
Cancer cells also show a general increase in glycolytic

enzyme activity and expression of specific isozymes. This
includes expression of HKII, LDH-A and PFKFB3
[52,79,80]. Tumor cells express PKM2, but there is now
strong evidence that this is largely in the metabolically in-
active, dimeric form, rather than the active tetramer [81].
In many tumor cells PKM2 activity is further inhibited by
direct tyrosine phosphorylation and by the binding of
phosphotyrosine containing peptides, both of which re-
strict cofactor binding. Reduced PKM2 activity enhances
aerobic glycolysis and tumor growth [82,83]. Cascades of
tyrosine phosphorylation are central to T cell activation;
however, it has yet to be determined if these cascades re-
sult in PKM2 inhibition. Recent reports in tumor cells
have demonstrated that PKM2 can be selectively degraded
in an acetylation-dependent fashion at times of high
glucose availability [84], allowing additional glycolytic
intermediates to be used for biosynthesis. Phosphoenol-
pyruvate flux through a non-ATP generating pathway may
then sustain rapid pyruvate generation while preventing
ATP-driven feedback inhibition of glycolysis [34]. This
regulatory loop for PKM2 may represent a further mech-
anism to maintain high rates of glycolytic flux, but this
has yet to be examined in activated lymphocytes.
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Beyond glucose metabolism: glutamine
Glutamine has multiple metabolic fates, being used for
ATP regeneration, anaplerosis of the TCA cycle, and redox
regulation. Within the cell glutamine is readily converted
to glutamate by glutaminase. Glutamate is used together
with cysteine and glycine to generate glutathione, is used
for lipid synthesis through reductive carboxylation under
hypoxia, and is a major nitrogen donor during purine and
pyrimidine synthesis. Naïve lymphocytes utilize glutamine
as a primary oxidative fuel for ATP generation. Following
T cell activation, cMyc greatly increases the expression of
glutaminolysis enzymes and the rate of glutamine uptake
[15,21]. After conversion to glutamate, glutamate dehydro-
genase generates α-ketoglutarate to support the TCA
cycle. Notably, while the early stages of lymphocyte activa-
tion do not require glutamine, subsequent proliferation
and the expression of effector cytokines following TCR
stimulation correlate directly with glutamine availability
[85-87], and there is clinical evidence to suggest that glu-
tamine availability can be a limiting factor in lymphocyte
activation during inflammatory responses [88-90].
Many tumor types exhibit high rates of glutamine con-

sumption relative to non-transformed cells [91-93]. Can-
cers driven by oncogenic cMyc, for example, become
highly dependent on glutamine [94,95] and can be ex-
quisitely sensitive to glutamine deprivation [96]. Other
tumors, however, can exhibit little sensitivity to glutamine
deprivation [93,97-99]. This resistance to glutamine
deprivation may relate to the induction of glutamine syn-
thase in these cells, and so although less dependent on
exogenous glutamine, they still exhibit high rates of
glutamate flux. Also, expression of pyruvate carboxylase
can allow glucose-derived pyruvate to convert to oxaloace-
tate to support the TCA cycle and maintain export of
citrate for lipid synthesis through anapleurosis [100].
Given these potential differences, activated T cells may rep-
resent a better metabolic model for primarily glutamine-
dependent tumors.

Common signaling events drive metabolic
reprogramming
The cancer metabolism phenotype is ultimately initiated
by oncogenic signaling events that induce metabolic gene
expression and stimulate aerobic glycolysis. Importantly, T
cell receptor and co-receptor engagement are now well
understood and activate many of these same signaling
pathways (see Smith-Garvin et al., 2009, for a detailed
review [101]). Briefly, the TCR is associated with several
CD3 accessory chains and when the TCR is engaged, tyro-
sine phosphorylation of accessory chains recruits kinases
and scaffold proteins. This recruitment, along with co-
stimulation, triggers localized stimulation of three signal-
ing pathways: calcium flux, MAPK (ERK/p38) signaling,
and phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3)
signaling. Autocrine and paracrine cytokine signaling
loops induce further PI(3,4,5)P3 and MAPK activation,
along with JAK/STAT signaling. Notably, several of the
downstream targets of these pathways regulate key
metabolic regulators, with mutations in components
downstream of these pathways strongly implicated in
oncogenesis. Identifying the specific signaling pathways in
activated T cells that induce metabolic reprogramming is
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therefore informative in identifying the oncogenes involved
in driving the same processes in tumors.

PI3K, PTEN, Akt and mTORC1
PI(3,4,5)P3 is generated by phosphatidylinositol-3-kinase
(PI3K) and depleted by phosphatases such as the tumor
suppressor, PTEN (phosphatase and tensin homologue
deleted on chromosome 10). Both sides of this signaling
equilibrium can impact cancer, as activating PI3K and dis-
rupting PTEN mutations frequently promote constitutive
signaling through PI(3,4,5)P3-dependent pathways [102].
Of the downstream targets for PI(3,4,5)P3 signaling, the
best described is Akt, an established metabolic regulator in
both tumors and lymphocytes. In hematopoietic cells and
naïve T cells, the expression of a constitutively active Akt
leads to increased GLUT1 surface localization, improved
coupling of HKII to the mitochondria and increased rates
of glycolysis [20,103,104]. Similarly, in tumor models Akt
drives cells towards aerobic glycolysis and makes cells
highly dependent on exogenous glucose for survival [105].
Akt promotes aerobic glycolysis by direct phosphoryl-

ation and activation of glycolytic enzymes, such as PFK2
[106], by phosphorylation of TBC1D1/4 to regulate GLUT1
trafficking, and by regulating several transcription factors
(reviewed in detail by Manning and Cantley, 2007) [107].
Further, Akt is able to activate mTORC1 (mammalian
target of rapamycin complex 1) via phosphorylation of up-
stream regulators PRAS40 and TSC2. mTORC1 is a key
driver of anabolic metabolism. Indeed, activating the PI3K/
Akt pathway can be considered a key regulator of glucose
metabolism in both T cells and cancer [108]. Inhibition of
this pathway in T cells is potently immunosuppressive and
leads to generation of tolerant or regulatory T cells rather
than effectors. Given the frequency of cancer-associated
mutations in this pathway, delineating how PI(3,4,5)P3 sig-
naling leads to metabolic reprogramming in lymphocytes
may provide a unique opportunity to understand the regu-
lation of cancer metabolism.

MAPK and HIF1α
The multifactorial roles of the mitogenic ras-MAPK sig-
naling pathways in cancer have been extensively reviewed
recently [109-111]. MAPK have multiple roles in meta-
bolic regulation in both tumors [112] and during T cell ac-
tivation [71,87]. One mechanistic role of recent interest is
MAPK regulation of hypoxia inducible factor 1α (HIF1α).
HIF1α is a heterodimeric transcription factor that induces
gene expression in response to hypoxia. HIF1α induces the
expression of many glycolytic genes, and HIF1α can be a
key mediator of the Pasteur effect in normal cells [113].
HIF1α protein levels are elevated without the need for hyp-
oxia by PI(3,4,5)P3 signaling through mTOR and other
pathways. Activated T cells and many tumor cells, there-
fore, can exhibit elevated levels of HIF1α. MAPK, however,
also play a key role in enhancing HIF1α transcriptional abil-
ity, by enhancing HIF1α interactions with transcriptional
co-factors [114].
HIF1α is not strongly expressed in normal tissues

under normoxic conditions and presents a potential
therapeutic target to selectively suppress tumor glucose
metabolism. In support of this strategy, several studies
have reported that HIF1α null tumor xenografts show
reduced growth, while overexpression of xenograft
HIFα promotes increased growth [115]. Curiously, and
in contrast to these data, HIF1α−/− T cells exhibit nor-
mal proliferative and initial metabolic responses to TCR
and co-receptor stimulation [116,117]. Instead, the im-
pact of HIF1α loss is only apparent when activated
HIF1α−/− T cells are subsequently skewed to different
cell fates. HIF1α−/− CD4+ T cells are unable to form
interleuken-17 (IL-17) producing T helper cells, which
are highly glycolytic. Instead, HIF1α−/− T cells become
immunosuppressive regulatory T cells in which lipid
metabolism, not glycolysis, is the major metabolic pro-
gram [41,117]. The role of HIF1α in metabolic regulation
is therefore limited during T cell activation. Determining
the signaling context by which T cell skewing directs
HIF1α regulation of metabolism may, however, be inform-
ative in determining how HIF1α functions in tumors.

JAK/STATs and the PIM kinases
T cell activation induced metabolism is maintained by sus-
tained signaling from IL-2 and other cytokines acting on
common gamma chain (γc) cytokine receptor complexes.
This effect is in part mediated by direct and STAT5 driven
PI(3,4,5)P3/Akt signaling [118,119]. However, additional
STAT driven, Akt-independent, signaling events also play
a role. Of note, JAK/STAT3 signaling in lymphocytes
induces the expression of the PIM family of kinases, which
themselves can promote glycolytic metabolism [120].
PIM kinases are constitutively active [121] and are po-

tent oncogenes, being induced by, and synergizing with,
the transcription factor cMyc in several cancer types
[122]. In addition, persistent STAT3 signaling is common
in many tumor types. While oncogenic STAT3 mutations
have not been reported, aberrant STAT3 signaling can
arise from inactivation of the STAT-suppressing suppres-
sor of cytokine signaling (SOCS) proteins or by elevated
activation of JAKs [123]. The γc-receptor-directed main-
tenance of activated T cell metabolism, therefore, poten-
tially presents a useful tool with which to study the role of
STAT-driven, PIM-mediated, regulation of metabolism.
Unfortunately, the PIMs share substrate specificity with
Akt [120], and are inhibited by the classical PI3K inhibitor
LY294002, a compound historically used to study Akt
function [124]. The specific role of PIM kinases in meta-
bolic reprogramming is hence unclear. Studies of acti-
vated, PIM-null T cells [125] may help resolve this issue.
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Calcium signaling and AMPK
Immediately after TCR activation there is a coordinated
flux of calcium from intracellular stores and also an in-
crease in mitochondrial calcium uptake [126]. These
changes stimulate the calcium-activated mitochondrial
dehydrogenases that drive the TCA cycle [127]. In
addition, calcium flux downstream of the TCR causes a
short term phosphorylation of AMP activated protein
kinase (AMPK) [128], a master metabolic regulator that
promotes catabolic pathways when the ATP-AMP ratio
falls. AMPK is activated by binding of AMP and when
phosphorylated by CaMKKβ or the tumor suppressor
LKB1 [129]. While the metabolic impact of AMPK acti-
vation by the TCR has yet to be fully defined, calcium-
induced AMPK activity during T cell activation may help
to promote an initial phase of oxidative and ATP- gener-
ating metabolism. This could prepare T cells to enter a
rapid growth phase and to resist the stress of nutrient-
deficient conditions. The latter role may be particularly
important as AMPK-null T cells show only a limited
metabolic phenotype under nutrient-rich conditions, but
fail to respond to metabolic stress in vitro [130]. In vivo,
nutrients are potentially limiting in lymph nodes or
inflamed tissues, and TCR-induced activation of AMPK
may be important to maintain ATP levels and maximize
survival, so that T cells can proceed to a later phase in
which AMPK activity is reduced and rapid cell growth
begins.
Although misregulation of calcium signaling can be

important in tumorigenesis [131], direct regulation of
tumor metabolism by calcium has not been studied in
detail. Indeed, the role of AMPK in cancer metabolism is
still controversial. While LKB1 has an established role as
a tumor suppressor, LKB1 has a variety of substrates and
how LKB1 tumor suppression relates to AMPK activa-
tion is unclear. AMPK activation has been proposed as
being anti-tumorigenic, as it suppresses cell cycle pro-
gression and can oppose Akt activity by suppressing
mTORC1 [132]. Recent data, however, indicates that
transient AMPK activation in response to energy stress
can promote tumor survival by maintaining NADPH
homeostasis [133]. Understanding how AMPK activation
supports activated T cells in vivo in times of metabolic
stress may provide new clues as to the role of AMPK in
tumor metabolism.

Limitations of T cells as a model for tumor metabolism
Metabolic reprogramming in activated T cells is a useful
model to study the metabolic changes that occur during
tumorigenesis. Indeed, many of the pathways are similar
and approaches to disrupt cancer metabolism can also
be quite immunosuppressive. However, the two systems
have some significant differences that may provide useful
insight into novel anti-cancer therapies.
T Cell metabolic reprogramming is both transient and
reversible
Following activation, T cells can differentiate into effector,
regulatory and memory T cells that have differing meta-
bolic profiles [2,117,134]. Activated T cells are, therefore,
metabolically flexible and not fixed into a specific meta-
bolic program. Unlike cancer cells with specific oncogenic
mutations, T cell metabolism is dependent on signaling
pathways triggered by the local environment. Indeed, even
once T cell functional and metabolic fate has been defined
there is a degree of reversibility and plasticity, for example,
lipid-dependent regulatory T cells can be redirected to
form highly glycolytic, IL-17-producing cells by altering
the cytokine environment [41,135]. In contrast, tumor
cells are largely fixed on one metabolic route that is dic-
tated by irreversible mutations in upstream signaling path-
ways. Thus, cancer cells have less metabolic flexibility
than T cells and the response of each cell type to inhib-
ition of specific metabolic pathways may lead to distinctly
different outcomes.

Activated T cells are not tumorigenic
Despite the metabolic and other similarities between
stimulated T cells and a cancer cell undergoing aerobic gly-
colysis, activated T cells are not cancerous. Instead, follow-
ing clearance of an infection the vast majority of activated
T cells will die due to activation-induced cell death or from
cytokine neglect. Both activated T cells and tumor cells are
kept alive by a precarious balance of pro- and anti-
apoptotic BH3 domain-containing proteins. In lympho-
cytes this balance is maintained by cytokine signaling
through Akt and other pathways, and, in addition, by
glycolytic flux [136-139]. Within tumors this balance is
maintained both by glycolytic flux and oncogenic signaling.
Understanding how activated T cells die following the loss
of glycolytic flux and cytokine signals may provide insight
into how anti-metabolites kill, or fail to kill, cancer cells.

Tumor cells are metabolically and genetically diverse
It is becoming evident that while the phenomena of aer-
obic glycolysis is common to many tumors, different
cancer cells, potentially even within the same tumor, are
metabolically diverse. Even within cell lines established
from the same type of tumor there exists significant
metabolic variation [140,141]. This heterogeneity can be
representative of cancer stage or subtype, as in prostate
and breast cancer. Given the strong dependence of T
cells on glutamine, activated T cells represent a better
model for glutamine-addicted tumors, for example those
driven by oncogenic Myc [21,95], than more glucose
dependent tumors, for example those driven by Met
[141]. More importantly, activated T cells themselves be-
come metabolically diverse as they differentiate into spe-
cific effector or regulatory subsets [41]. These T cell
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differentiation pathways are regulated by specific signal-
ing events and it will be interesting to determine if dis-
tinct T cell subtypes may represent specific cancer types
or stages. This is an important consideration as the sen-
sitivity of tumor cells to metabolic inhibitors varies de-
pending on the oncogenes involved [142].

Conclusions
Cancer cells and activated T cells adopt comparable meta-
bolic profiles to cope with similar environmental and pro-
liferative stressors. Given that both T cell activation and
tumorigenesis often resort to the same signaling pathways
to induce this metabolic rewiring, T cell activation offers a
useful model with which to study the mechanics of meta-
bolic reprogramming. While cancer metabolism is inher-
ently more diverse and susceptible to selective pressures, T
cells have the significant advantage in a laboratory setting
of being quiescent and non-cycling prior to activation, aid-
ing in the delineation of cell signaling and cell cycle effects.
The aerobic glycolysis and glutamine dependency of

cancer cells have been identified as potential novel targets
for cancer therapy, and so developing an improved un-
derstanding of how these metabolic programs arise is of
clinical importance. However, given the close similarity be-
tween activated T cell and tumor metabolic reprogram-
ming, consideration must be given to the impact drugs
targeting these pathways will have on T cells. T cell metab-
olism and T cell survival are intertwined, and the loss of
anti-tumor T cells may negate many of the benefits of
drugs targeting tumor metabolism. This is especially sig-
nificant in the context of recent data indicating that meta-
bolic suppression of activating T cells skews them toward
an immunosuppressive phenotype, which may suppress
anti-tumor immune responses [41].
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