132 research outputs found

    Preconditioning with Porphyromonas gingivalis lipopolysaccharide may confer cardioprotection and improve recovery of the electrically induced intracellular calcium transient during ischemia and reperfusion

    Get PDF
    Background and Objective: Porphyromonas gingivalis lipopolysaccharide (LPS) is a ligand for cell surface toll-like receptors (TLR), TLR2 and TLR4 while stimulation of either leads to cardioprotection. We hypothesized that: (1) pretreatment with P. gingivalis LPS at appropriate concentrations would induce cardioprotection against injury induced by ischemia and reperfusion; and (2) P. gingivalis LPS pretreatment at cardioprotective concentrations may reduce Ca2+ overload, which is a precipitating cause of injury, and improve recovery of contractile function. Material and Methods: Male Sprague-Dawley rats were randomly selected to receive intraperitoneal saline or hot phenol-water-extracted P. gingivalis LPS at 0.2, 0.5, 1.0, 2.0 or 4.0 mg/kg 24 h before the experiment. The hearts were isolated and subjected to regional ischemia by coronary artery ligation followed by reperfusion. In isolated rat ventricular myocytes, the cytosolic Ca2+ level and the electrically induced intracellular calcium (E[Ca2+]i) transient, which reflects contractile function, were determined after pretreatment with a cardioprotective dose of P. gingivalis LPS. Results: Pretreatment with 0.5 mg/kg P. gingivalis LPS significantly reduced, while pretreatment with 1.0-4.0 mg/kg significantly increased infarct size. The Ca2+ overload induced by ischemia-reperfusion was attenuated in myocytes from rats pretreated with 0.5 mg/kg P. gingivalis LPS. Pretreated myocytes also showed an increased amplitude of the E[Ca2+]i transient, no prolongation of the time to reach the peak E[Ca2+]i transient and shorter 50% decay time during reperfusion. Conclusion: At a dosage of 0.5 mg/kg, P. gingivalis LPS confers cardioprotection against ischemia-reperfusion-induced injury and improved intracellular E[Ca2+]i transient recovery, hence improving myocyte contractile recovery. © 2009 John Wiley & Sons A/S.postprin

    A cluster of cases of severe acute respiratory syndrome in Hong Kong

    Get PDF
    BACKGROUND: Information on the clinical features of the severe acute respiratory syndrome (SARS) will be of value to physicians caring for patients suspected of having this disorder. METHODS: We abstracted data on the clinical presentation and course of disease in 10 epidemiologically linked Chinese patients (5 men and 5 women 38 to 72 years old) in whom SARS was diagnosed between February 22, 2003, and March 22, 2003, at our hospitals in Hong Kong, China. RESULTS: Exposure between the source patient and subsequent patients ranged from minimal to that between patient and health care provider. The incubation period ranged from 2 to 11 days. All patients presented with fever (temperature, >38°C for over 24 hours), and most presented with rigor, dry cough, dyspnea, malaise, headache, and hypoxemia. Physical examination of the chest revealed crackles and percussion dullness. Lymphopenia was observed in nine patients, and most patients had mildly elevated aminotransferase levels but normal serum creatinine levels. Serial chest radiographs showed progressive air-space disease. Two patients died of progressive respiratory failure; histologic analysis of their lungs showed diffuse alveolar damage. There was no evidence of infection by Mycoplasma pneumoniae, Chlamydia pneumoniae, or Legionella pneumophila. All patients received corticosteroid and ribavirin therapy a mean (±SD) of 9.6±5.42 days after the onset of symptoms, and eight were treated earlier with a combination of beta-lactams and macrolide for 4±1.9 days, with no clinical or radiologic efficacy. CONCLUSIONS: SARS appears to be infectious in origin. Fever followed by rapidly progressive respiratory compromise is the key complex of signs and symptoms from which the syndrome derives its name. The microbiologic origins of SARS remain unclear.published_or_final_versio

    ANXA3/JNK Signaling Promotes Self-Renewal and Tumor Growth, and Its Blockade Provides a Therapeutic Target for Hepatocellular Carcinoma

    Get PDF
    Frequent tumor relapse in hepatocellular carcinoma (HCC) has been commonly attributed to the presence of residual cancer stem cells (CSCs) after conventional treatments. We have previously identified and characterized CD133 to mark a specific CSC subset in HCC. In the present study, we found endogenous and secretory annexin A3 (ANXA3) to play pivotal roles in promoting cancer and stem cell-like features in CD133+ liver CSCs through a dysregulated JNK pathway. Blockade of ANXA3 with an anti-ANXA3 monoclonal antibody in vitro as well as in human HCC xenograft models resulted in a significant reduction in tumor growth and self-renewal. Clinically, ANXA3 expression in HCC patient sera closely associated with aggressive clinical features. Our results suggest that ANXA3 can serve as a novel diagnostic biomarker and that the inhibition of ANXA3 may be a viable therapeutic option for the treatment of CD133+ liver-CSC-driven HCC. © 2015 The Authors.published_or_final_versio

    Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.

    Get PDF
    Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells

    Immunization against Leishmania major Infection Using LACK- and IL-12-Expressing Lactococcus lactis Induces Delay in Footpad Swelling

    Get PDF
    BACKGROUND: Leishmania is a mammalian parasite affecting over 12 million individuals worldwide. Current treatments are expensive, cause severe side effects, and emerging drug resistance has been reported. Vaccination is the most cost-effective means to control infectious disease but currently there is no vaccine available against Leishmaniasis. Lactococcus lactis is a non-pathogenic, non-colonizing Gram-positive lactic acid bacterium commonly used in the dairy industry. Recently, L. lactis was used to express biologically active molecules including vaccine antigens and cytokines. METHODOLOGY/PRINCIPAL FINDINGS: We report the generation of L. lactis strains expressing the protective Leishmania antigen, LACK, in the cytoplasm, secreted or anchored to the bacterial cell wall. L. lactis was also engineered to secrete biologically active single chain mouse IL-12. Subcutaneous immunization with live L. lactis expressing LACK anchored to the cell wall and L. lactis secreting IL-12 significantly delayed footpad swelling in Leishmania major infected BALB/c mice. The delay in footpad swelling correlated with a significant reduction of parasite burden in immunized animals compared to control groups. Immunization with these two L. lactis strains induced antigen-specific multifunctional T(H)1 CD4(+) and CD8(+) T cells and a systemic LACK-specific T(H)1 immune response. Further, protection in immunized animals correlated with a Leishmania-specific T(H)1 immune response post-challenge. L. lactis secreting mouse IL-12 was essential for directing immune responses to LACK towards a protective T(H)1 response. CONCLUSIONS/SIGNIFICANCE: This report demonstrates the use of L. lactis as a live vaccine against L. major infection in BALB/c mice. The strains generated in this study provide the basis for the development of an inexpensive and safe vaccine against the human parasite Leishmania

    Differential expression of Caveolin-1 in hepatocellular carcinoma: correlation with differentiation state, motility and invasion

    Get PDF
    WOS: 000264914000001PubMed ID: 19239691Turkish Scientific and Technological Research Council (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [SBAG-107S026]; Dokuz Eylul University Research FoundationDokuz Eylul University [05.KB.SAG.071]We thank Prof. Mehmet Ozturk for providing us HCC cell lines and for his critical reading of the manuscript; and Prof. Aykut Uren for his helpful discussions on the manuscript. We also thank to Evin Ozen for her technical assistance. This work was supported by grants to Nese ATABEY from the Turkish Scientific and Technological Research Council (TUBITAK, SBAG-107S026) and Dokuz Eylul University Research Foundation (05.KB.SAG.071)

    Hypernovae and Other Black-Hole-Forming Supernovae

    Full text link
    During the last few years, a number of exceptional core-collapse supernovae (SNe) have been discovered. Their kinetic energy of the explosions are larger by more than an order of magnitude than the typical values for this type of SNe, so that these SNe have been called `Hypernovae'. We first describe how the basic properties of hypernovae can be derived from observations and modeling. These hypernovae seem to come from rather massive stars, thus forming black holes. On the other hand, there are some examples of massive SNe with only a small kinetic energy. We suggest that stars with non-rotating black holes are likely to collapse "quietly" ejecting a small amount of heavy elements (Faint supernovae). In contrast, stars with rotating black holes are likely to give rise to very energetic supernovae (Hypernovae). We present distinct nucleosynthesis features of these two types of "black-hole-forming" supernovae. Hypernova nucleosynthesis is characterized by larger abundance ratios (Zn,Co,V,Ti)/Fe and smaller (Mn,Cr)/Fe. Nucleosynthesis in Faint supernovae is characterized by a large amount of fall-back. We show that the abundance pattern of the most Fe deficient star, HE0107-5240, and other extremely metal-poor carbon-rich stars are in good accord with those of black-hole-forming supernovae, but not pair-instability supernovae. This suggests that black-hole-forming supernovae made important contributions to the early Galactic (and cosmic) chemical evolution.Comment: 49 pages, to be published in "Stellar Collapse" (Astrophysics and Space Science; Kluwer) ed. C. L. Fryer (2003

    Resolving the Role of Actoymyosin Contractility in Cell Microrheology

    Get PDF
    Einstein's original description of Brownian motion established a direct relationship between thermally-excited random forces and the transport properties of a submicron particle in a viscous liquid. Recent work based on reconstituted actin filament networks suggests that nonthermal forces driven by the motor protein myosin II can induce large non-equilibrium fluctuations that dominate the motion of particles in cytoskeletal networks. Here, using high-resolution particle tracking, we find that thermal forces, not myosin-induced fluctuating forces, drive the motion of submicron particles embedded in the cytoskeleton of living cells. These results resolve the roles of myosin II and contractile actomyosin structures in the motion of nanoparticles lodged in the cytoplasm, reveal the biphasic mechanical architecture of adherent cells—stiff contractile stress fibers interdigitating in a network at the cell cortex and a soft actin meshwork in the body of the cell, validate the method of particle tracking-microrheology, and reconcile seemingly disparate atomic force microscopy (AFM) and particle-tracking microrheology measurements of living cells
    • …
    corecore