15 research outputs found

    High levels of chromosomal differentiation in Euchroma gigantea L. 1735 (Coleoptera, Buprestidae)

    No full text
    Euchroma gigantea was karyotypically studied using conventional staining, C-banding, silver nitrate staining and ribosomal fluorescent in situ hybridization (rDNA FISH). Broad wide autosomal polymorphism and a complex sex determination system were found in this beetle. Karyotype complements ranging from 2n = 32, X1X2X3Y1Y2Y3 to 2n = 36,X1X2X3Y1Y2Y3 were detected in the sample analyzed. Punctiform supernumerary chromosomes were present in the different karyotypes. The karyotypic evolution of Brazilian E. gigantea may have taken two directions, reduction in the diploid number of 2n = 36 to 24 through centric fusions or 2n = 24 to 36 due to chromosomal fissions. In addition, pericentric inversions were also involved. The complex multiple sex mechanism of this species seems to be old and well established since it is found in specimens from different populations. Small pericentromeric blocks of constitutive heterochromatin were located on the autosomes and terminal blocks were also found on some small pairs. The sex chromosomes showed larger constitutive heterochromatin blocks. Silver nitrate staining during prophase I of meiosis showed labeling of the sex chromosome chain. However, the rDNA sites could only be precisely determined by FISH, which permitted the identification of these ribosomal sites on chromosomes X1 and X2 of this species

    Morphological Clines and Weak Drift along an Urbanization Gradient in the Butterfly, Pieris rapae

    Get PDF
    Urban areas are increasing globally, providing opportunities for biodiversity researchers to study the process in which species become established in novel, highly disturbed habitats. This ecological process can be understood through analyses of morphological and genetic variation, which can shed light on patterns of neutral and adaptive evolution. Previous studies have shown that urban populations often diverge genetically from non-urban source populations. This could occur due to neutral genetic drift, but an alternative is that selection could lead to allele frequency changes in urban populations. The development of genome scan methods provides an opportunity to investigate these outcomes from samples of genetic variation taken along an urbanization gradient. Here we examine morphological variation in wing size and diversity at neutral amplified fragment length polymorphisms in the butterfly Pieris rapae L. (Lepidoptera, Pieridae) sampled from the center to the periphery of Marseille. We utilize established and novel environmental correlation approaches to scan genetic variation for evidence of selection. We find significant morphological differences in urban populations, as well as weak genetic structure and decreased genetic diversity in urban versus non-urban sites. However, environmental correlation tests provide little support for selection in our dataset. Our comparison of different methods and allele frequency clines suggests that loci identified as significant are false positives. Although there is some indication that selection may be acting on wing size in urban butterflies, genetic analyses suggest P. rapae are undergoing neutral drift

    Activation of the inflammasome by amorphous silica and TiO(2) nanoparticles in murine dendritic cells

    Full text link
    Abstract Nanomaterials are increasingly used in various food applications. In particular, nanoparticulate amorphous SiO(2) is already contained, e.g., in spices. Since intestinal dendritic cells (DC) could be critical targets for ingested particles, we compared the in vitro effects of amorphous silica nanoparticles with fine crystalline silica, and micron-sized with nano-sized TiO(2) particles on DC. TiO(2)- and SiO(2)-nanoparticles, as well as crystalline silica led to an upregulation of MHC-II, CD80, and CD86 on DC. Furthermore, these particles activated the inflammasome, leading to significant IL-1β-secretion in wild-type (WT) but not Caspase-1- or NLRP3-deficient mice. Silica nanoparticles and crystalline silica induced apoptosis, while TiO(2) nanoparticles led to enhanced production of reactive oxygen species (ROS). Since amorphous silica and TiO(2) nanoparticles had strong effects on the activation-status of DC, we suggest that nanoparticles, used as food additives, should be intensively studied in vitro and in vivo, to ensure their safety for the consumer
    corecore