340 research outputs found

    The development of a bearing of high stiffness and a wide speed range

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and was awarded by Brunel University.For abstract see full text

    Explicit Solution of the Time Domain Volume Integral Equation Using a Stable Predictor-Corrector Scheme

    Get PDF
    An explicit marching-on-in-time (MOT) scheme for solving the time domain volume integral equation is presented. The proposed method achieves its stability by employing, at each time step, a corrector scheme, which updates/corrects fields computed by the explicit predictor scheme. The proposedmethod is computationally more efficient when compared to the existing filtering techniques used for the stabilization of explicit MOT schemes. Numerical results presented in this paper demonstrate that the proposed method maintains its stability even when applied to the analysis of electromagnetic wave interactions with electrically large structures meshed using approximately half a million discretization elements

    Predicting Distribution of Aedes Aegypti and Culex Pipiens Complex, Potential Vectors of Rift Valley Fever Virus in Relation to Disease Epidemics in East Africa.

    Get PDF
    The East African region has experienced several Rift Valley fever (RVF) outbreaks since the 1930s. The objective of this study was to identify distributions of potential disease vectors in relation to disease epidemics. Understanding disease vector potential distributions is a major concern for disease transmission dynamics. DIVERSE ECOLOGICAL NICHE MODELLING TECHNIQUES HAVE BEEN DEVELOPED FOR THIS PURPOSE: we present a maximum entropy (Maxent) approach for estimating distributions of potential RVF vectors in un-sampled areas in East Africa. We modelled the distribution of two species of mosquitoes (Aedes aegypti and Culex pipiens complex) responsible for potential maintenance and amplification of the virus, respectively. Predicted distributions of environmentally suitable areas in East Africa were based on the presence-only occurrence data derived from our entomological study in Ngorongoro District in northern Tanzania. Our model predicted potential suitable areas with high success rates of 90.9% for A. aegypti and 91.6% for C. pipiens complex. Model performance was statistically significantly better than random for both species. Most suitable sites for the two vectors were predicted in central and northwestern Tanzania with previous disease epidemics. Other important risk areas include western Lake Victoria, northern parts of Lake Malawi, and the Rift Valley region of Kenya. Findings from this study show distributions of vectors had biological and epidemiological significance in relation to disease outbreak hotspots, and hence provide guidance for the selection of sampling areas for RVF vectors during inter-epidemic periods

    Multiple primary malignancies and subtle mucocutaneous lesions associated with a novel PTEN gene mutation in a patient with Cowden syndrome: Case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cowden syndrome (CS) is a cancer predisposition syndrome associated with increased risk of breast, thyroid, and endometrial cancers, and is characterized by development of benign mucocutaneous lesions.</p> <p>Case presentation</p> <p>Here we report on a 58-year-old woman with multiple primary malignancies and subtle mucocutaneous lesions such as small polyps and wart-like papulas. Over a period of 23 years, she developed various malignant neoplasms including thyroid, ovarian, stomach, and colon carcinomas, and a benign meningioma. Direct sequencing analysis of the <it>PTEN </it>gene revealed a novel germline mutation (c.438delT, p.Leu146X).</p> <p>Conclusion</p> <p>This case demonstrates that Cowden syndrome is a multi-system disease that can result in the development of multiple malignant and benign tumors.</p

    Next-Generation Phylogeography: A Targeted Approach for Multilocus Sequencing of Non-Model Organisms

    Get PDF
    The field of phylogeography has long since realized the need and utility of incorporating nuclear DNA (nDNA) sequences into analyses. However, the use of nDNA sequence data, at the population level, has been hindered by technical laboratory difficulty, sequencing costs, and problematic analytical methods dealing with genotypic sequence data, especially in non-model organisms. Here, we present a method utilizing the 454 GS-FLX Titanium pyrosequencing platform with the capacity to simultaneously sequence two species of sea star (Meridiastra calcar and Parvulastra exigua) at five different nDNA loci across 16 different populations of 20 individuals each per species. We compare results from 3 populations with traditional Sanger sequencing based methods, and demonstrate that this next-generation sequencing platform is more time and cost effective and more sensitive to rare variants than Sanger based sequencing. A crucial advantage is that the high coverage of clonally amplified sequences simplifies haplotype determination, even in highly polymorphic species. This targeted next-generation approach can greatly increase the use of nDNA sequence loci in phylogeographic and population genetic studies by mitigating many of the time, cost, and analytical issues associated with highly polymorphic, diploid sequence markers

    Naturally Occurring Genetic Variants in Human Chromogranin A (CHGA) Associated with Hypertension as well as Hypertensive Renal Disease

    Get PDF
    Chromogranin A (CHGA) plays a fundamental role in the biogenesis of catecholamine secretory granules. Changes in storage and release of CHGA in clinical and experimental hypertension prompted us to study whether genetic variation at the CHGA locus might contribute to alterations in autonomic function, and hence hypertension and its target organ consequences such as hypertensive renal disease (nephrosclerosis). Systematic polymorphism discovery across the human CHGA locus revealed both common and unusual variants in both the open reading frame and such regulatory regions as the proximal promoter and 3′-UTR. In chromaffin cell-transfected CHGA 3′-UTR and promoter/luciferase reporter plasmids, the functional consequences of the regulatory/non-coding allelic variants were documented. Variants in both the proximal promoter and the 3′-UTR displayed statistical associations with hypertension. Genetic variation in the proximal CHGA promoter predicted glomerular filtration rate in healthy twins. However, for hypertensive renal damage, both end-stage renal disease and rate of progression of earlier disease were best predicted by variants in the 3′-UTR. Finally, mechanistic studies were undertaken initiated by the clue that CHGA promoter variation predicted circulating endothelin-1. In cultured endothelial cells, CHGA triggered co-release of not only the vasoconstrictor and pro-fibrotic endothelin-1, but also the pro-coagulant von Willebrand Factor and the pro-angiogenic angiopoietin-2. These findings, coupled with stimulation of endothelin-1 release from glomerular capillary endothelial cells by CHGA, suggest a plausible mechanism whereby genetic variation at the CHGA locus eventuates in alterations in human renal function. These results document the consequences of genetic variation at the CHGA locus for cardiorenal disease and suggest mechanisms whereby such variation achieves functional effects

    State-of-the-art microscopy to understand islets of Langerhans:what to expect next?

    Get PDF
    The discovery of Langerhans and microscopic description of islets in the pancreas were crucial steps in the discovery of insulin. Over the past 150 years, many discoveries in islet biology and type 1 diabetes have been made using powerful microscopic techniques. In the past decade, combination of new probes, animal and tissue models, application of new biosensors and automation of light and electron microscopic methods and other (sub)cellular imaging modalities have proven their potential in understanding the beta cell under (patho)physiological conditions. The imaging evolution, from fluorescent jellyfish to real-time intravital functional imaging, the revolution in automation and data handling and the increased resolving power of analytical imaging techniques are now converging. Here, we review innovative approaches that address islet biology from new angles by studying cells and molecules at high spatiotemporal resolution and in live models. Broad implementation of these cellular imaging techniques will shed new light on cause/consequence of (mal)function in islets of Langerhans in the years to come

    A systematic review of attitudes, anxiety, acceptance, and trust towards social robots

    Get PDF
    As social robots become more common, there is a need to understand how people perceive and interact with such technology. This systematic review seeks to estimate people’s attitudes toward, trust in, anxiety associated with, and acceptance of social robots; as well as factors that are associated with these beliefs. Ninety-seven studies were identified with a combined sample of over 13,000 participants and a standardized score was computed for each in order to represent the valence (positive, negative, or neutral) and magnitude (on a scale from 1 to − 1) of people’s beliefs about robots. Potential moderating factors such as the robots’ domain of application and design, the type of exposure to the robot, and the characteristics of potential users were also investigated. The findings suggest that people generally have positive attitudes towards social robots and are willing to interact with them. This finding may challenge some of the existing doubt surrounding the adoption of robotics in social domains of application but more research is needed to fully understand the factors that influence attitudes
    corecore