32 research outputs found

    Forcing Dependence of Atmospheric Lapse Rate Changes Dominates Residual Polar Warming in Solar Radiation Management Climate Scenarios

    Get PDF
    This is the final version. Available from Wiley / American Geophysical Union via the DOI in this record. Simulations of solar radiation management (SRM) geoengineering using comprehensive general circulation models show a residual surface warming at high latitudes. Previous work attributes this to the difference in forcing structure between the increase in greenhouse gases and decrease in insolation, but this neglects the role of the induced reduction in atmospheric energy transport. Here we show that the difference in vertical structure of temperature change between increasing CO2, decreasing insolation, and decreasing atmospheric energy transport is the dominant reason for the residual near-surface warming at high latitudes. A single-column model (SCM) is used to decompose the high-latitude temperature change and shows the importance of the enhanced near-surface warming from the CO2 increase in explaining the residual polar warming. This suite of models invites caution when attributing high-latitude surface temperature changes to the lapse rate feedback, as various forcings and nonlocal processes affect the vertical structure of temperature change differently.Fonds de Recherche du Québec ‐ Nature et Technologies (FRQNT)Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (NSERC)Compute Canad

    Decomposing the drivers of polar amplification with a single-column model

    Get PDF
    This is the final version. Available from the American Meteorological Society via the DOI in this record. The code and data needed to reproduce all figures, tables, and supplemental figures are available at https:// github.com/matthewjhenry/HMLR19_SCM. Documentation for the Python ClimLab package can be found at https://climlab. readthedocs.io/. The top-of-atmosphere albedo data from the Cloud and the Earth’s Radiant Energy System (CERES) can be found at https://ceres.larc.nasa.gov/. The CMIP6 data are available on the Earth System Grid Federation database. TThe precise mechanisms driving Arctic amplification are still under debate. Previous attribution methods compute the vertically uniform temperature change required to balance the top-of-atmosphere energy imbalance caused by each forcing and feedback, with any departures from vertically uniform warming collected into the lapse-rate feedback. We propose an alternative attribution method using a single-column model that accounts for the forcing dependence of high-latitude lapse-rate changes. We examine this method in an idealized general circulation model (GCM), finding that, even though the column-integrated carbon dioxide (CO2) forcing and water vapor feedback are stronger in the tropics, they contribute to polar-amplified surface warming as they produce bottom-heavy warming in high latitudes. A separation of atmospheric temperature changes into local and remote contributors shows that, in the absence of polar surface forcing (e.g., sea ice retreat), changes in energy transport are primarily responsible for the polar-amplified pattern of warming. The addition of surface forcing substantially increases polar surface warming and reduces the contribution of atmospheric dry static energy transport to the warming. This physically based attribution method can be applied to comprehensive GCMs to provide a clearer view of the mechanisms behind Arctic amplification.Natural Sciences and Engineering Research Council of CanadaNational Science Foundation (USA

    Model Hierarchies for Understanding Atmospheric Circulation

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record.In this review, we highlight the complementary relationship between simple and comprehensive models in addressing key scientific questions to describe Earth’s atmospheric circulation. The systematic representation of models in steps, or hierarchies, connects our understanding from idealized systems to comprehensive models, and ultimately the observed atmosphere. We define three interconnected principles that can be used to characterize the model hierarchies of the atmosphere. We explore the rich diversity within the governing equations in the dynamical hierarchy, the ability to isolate and understand atmospheric processes in the process hierarchy, and the importance of the physical domain and resolution in the hierarchy of scale. We center our discussion on the large scale circulation of the atmosphere and its interaction with clouds and convection, focusing on areas where simple models have had a significant impact. Our confidence in climate model projections of the future is based on our efforts to ground the climate predictions in fundamental physical understanding. This understanding is, in part, possible due to the hierarchies of idealized models that afford the simplicity required for understanding complex systems.Natural Environment Research Council (NERC)US National Science FoundationUS Department of Energy Office of Biological and Environmental ResearchNatural Science and Engineering Research Council of CanadaAustralian Research CouncilSimons FoundationGerman Ministry of Education and Research (BMBF)FONA: Research for Sustainable DevelopmentState Research Agency of Spai

    Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection

    Get PDF
    Intense tropical rainfall occurs in a narrow belt near the equator, called the inter-tropical convergence zone (ITCZ). In the past decade, the atmospheric energy budget has been used to explain changes in the zonal-mean ITCZ position. The energetics framework provides a mechanism for extratropics-to-tropics teleconnections, which have been postulated from paleoclimate records. In atmosphere models coupled with a motionless slab ocean, the ITCZ shifts toward the warmed hemisphere in order for the Hadley circulation to transport energy toward the colder hemisphere. However, recent studies using fully coupled models show that tropical rainfall can be rather insensitive to extratropical forcing when ocean dynamics is included. Here, we explore the effect of meridional Ekman heat advection while neglecting the upwelling effect on the ITCZ response to prescribed extratropical thermal forcing. The tropical component of Ekman advection is a negative feedback that partially compensates the prescribed forcing, whereas the extratropical component is a positive feedback that amplifies the prescribed forcing. Overall, the tropical negative feedback dominates over the extratropical positive feedback. Thus, including Ekman advection reduces the need for atmospheric energy transport, dampening the ITCZ response. We propose to build a hierarchy of ocean models to systematically explore the full dynamical response of the coupled climate system

    Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844b

    Get PDF
    Most known terrestrial planets orbit small stars with radii less than 60 per cent of that of the Sun. Theoretical models predict that these planets are more vulnerable to atmospheric loss than their counterparts orbiting Sun-like stars. To determine whether a thick atmosphere has survived on a small planet, one approach is to search for signatures of atmospheric heat redistribution in its thermal phase curve. Previous phase curve observations of the super-Earth 55 Cancri e (1.9 Earth radii) showed that its peak brightness is offset from the substellar point (latitude and longitude of 0 degrees)—possibly indicative of atmospheric circulation. Here we report a phase curve measurement for the smaller, cooler exoplanet LHS 3844b, a 1.3-Earth-radii world in an 11-hour orbit around the small nearby star LHS 3844. The observed phase variation is symmetric and has a large amplitude, implying a dayside brightness temperature of 1,040 ± 40 kelvin and a nightside temperature consistent with zero kelvin (at one standard deviation). Thick atmospheres with surface pressures above 10 bar are ruled out by the data (at three standard deviations), and less-massive atmospheres are susceptible to erosion by stellar wind. The data are well fitted by a bare-rock model with a low Bond albedo (lower than 0.2 at two standard deviations). These results support theoretical predictions that hot terrestrial planets orbiting small stars may not retain substantial atmospheres

    Beyond equilibrium climate sensitivity

    Get PDF
    ISSN:1752-0908ISSN:1752-089

    Fast dynamical spin-up of ocean general circulation models using Newton-Krylov methods

    No full text
    Numerical models of the ocean play an important role in efforts to understand past climate variability and predict future climate changes. In many studies, ocean models are driven by forcings that are either time-independent or vary periodically (seasonally) and it is often highly desirable or even essential to obtain equilibrium solutions of the model. Existing methods, based on the simple, expedient idea of integrating the model until the transients have died out, are too expensive to use routinely because the ocean takes several thousand years to equilibrate. Here, we present a novel approach for efficiently computing equilibrium solutions of ocean models. Our general approach is to formulate the problem as a large system of nonlinear algebraic equations to be solved with a class of methods known as matrix-free Newton-Krylov, a combination of Newton-type methods for superlinearly convergent solution of nonlinear equations, and Krylov subspace methods for solving the Newton correction equations. As an initial demonstration of the feasibility of this approach, we apply it to find the equilibrium solutions of a quasi-geostrophic ocean model for both steady forcing and seasonally-varying forcing. We show that the matrix-free Newton-Krylov method converges to the solutions obtained by direct time integration of the model, but at a computational cost that is between 10 and 100 times smaller than direct integration. A key advantage of our approach is that it can be applied to any existing time-stepping code, including ocean general circulation models and biogeochemical models. However, effective preconditioning of the linear equations to be solved during the Newton iteration remains a challenge. © 2008 Elsevier Ltd. All rights reserved
    corecore