1,210 research outputs found

    Design Rules for Self-Assembly of 2D Nanocrystal/Metal-Organic Framework Superstructures.

    Get PDF
    We demonstrate the guiding principles behind simple two dimensional self-assembly of MOF nanoparticles (NPs) and oleic acid capped iron oxide (Fe3 O4 ) NCs into a uniform two-dimensional bi-layered superstructure. This self-assembly process can be controlled by the energy of ligand-ligand interactions between surface ligands on Fe3 O4 NCs and Zr6 O4 (OH)4 (fumarate)6 MOF NPs. Scanning transmission electron microscopy (TEM)/energy-dispersive X-ray spectroscopy and TEM tomography confirm the hierarchical co-assembly of Fe3 O4 NCs with MOF NPs as ligand energies are manipulated to promote facile diffusion of the smaller NCs. First-principles calculations and event-driven molecular dynamics simulations indicate that the observed patterns are dictated by combination of ligand-surface and ligand-ligand interactions. This study opens a new avenue for design and self-assembly of MOFs and NCs into high surface area assemblies, mimicking the structure of supported catalyst architectures, and provides a thorough fundamental understanding of the self-assembly process, which could be a guide for designing functional materials with desired structure

    Effective Capacity in Broadcast Channels with Arbitrary Inputs

    Full text link
    We consider a broadcast scenario where one transmitter communicates with two receivers under quality-of-service constraints. The transmitter initially employs superposition coding strategies with arbitrarily distributed signals and sends data to both receivers. Regarding the channel state conditions, the receivers perform successive interference cancellation to decode their own data. We express the effective capacity region that provides the maximum allowable sustainable data arrival rate region at the transmitter buffer or buffers. Given an average transmission power limit, we provide a two-step approach to obtain the optimal power allocation policies that maximize the effective capacity region. Then, we characterize the optimal decoding regions at the receivers in the space spanned by the channel fading power values. We finally substantiate our results with numerical presentations.Comment: This paper will appear in 14th International Conference on Wired&Wireless Internet Communications (WWIC

    Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity

    Get PDF
    The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à-brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages. © 2013 Rogers et al

    Shortest-Path Network Analysis Is a Useful Approach toward Identifying Genetic Determinants of Longevity

    Get PDF
    Background Identification of genes that modulate longevity is a major focus of aging-related research and an area of intense public interest. In addition to facilitating an improved understanding of the basic mechanisms of aging, such genes represent potential targets for therapeutic intervention in multiple age-associated diseases, including cancer, heart disease, diabetes, and neurodegenerative disorders. To date, however, targeted efforts at identifying longevity-associated genes have been limited by a lack of predictive power, and useful algorithms for candidate gene-identification have also been lacking. Methodology/Principal Findings We have utilized a shortest-path network analysis to identify novel genes that modulate longevity in Saccharomyces cerevisiae. Based on a set of previously reported genes associated with increased life span, we applied a shortest-path network algorithm to a pre-existing protein–protein interaction dataset in order to construct a shortest-path longevity network. To validate this network, the replicative aging potential of 88 single-gene deletion strains corresponding to predicted components of the shortest-path longevity network was determined. Here we report that the single-gene deletion strains identified by our shortest-path longevity analysis are significantly enriched for mutations conferring either increased or decreased replicative life span, relative to a randomly selected set of 564 single-gene deletion strains or to the current data set available for the entire haploid deletion collection. Further, we report the identification of previously unknown longevity genes, several of which function in a conserved longevity pathway believed to mediate life span extension in response to dietary restriction. Conclusions/Significance This work demonstrates that shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity and represents the first application of network analysis of aging to be extensively validated in a biological system. The novel longevity genes identified in this study are likely to yield further insight into the molecular mechanisms of aging and age-associated disease

    Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model

    Get PDF
    Food webs, networks of feeding relationships among organisms, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. Despite long-standing interest in the compartmental structure of food webs, past network analyses of food webs have been constrained by a standard definition of compartments, or modules, that requires many links within compartments and few links between them. Empirical analyses have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure in food webs using a flexible definition of a group that can describe both functional roles and standard compartments. The Serengeti ecosystem provides an opportunity to examine structure in a newly compiled food web that includes species-level resolution among plants, allowing us to address whether groups in the food web correspond to tightly-connected compartments or functional groups, and whether network structure reflects spatial or trophic organization, or a combination of the two. We have compiled the major mammalian and plant components of the Serengeti food web from published literature, and we infer its group structure using our method. We find that network structure corresponds to spatially distinct plant groups coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial patterns, in contrast to the standard compartments typically identified in ecological networks. From data consisting only of nodes and links, the group structure that emerges supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence.Comment: 28 pages, 6 figures (+ 3 supporting), 2 tables (+ 4 supporting

    Evaluation of Bovine Feces-Associated Microbial Source Tracking Markers and Their Correlations with Fecal Indicators and Zoonotic Pathogens in a Brisbane, Australia, Reservoir

    Get PDF
    This study was aimed at evaluating the host specificity and host sensitivity of two bovine feces-associated bacterial (BacCow-UCD and cowM3) and one viral {left open bracket}bovine adenovirus (B-AVs){right open bracket} microbial source tracking (MST) markers by screening 130 fecal and wastewater samples from 10 target and nontarget host groups in southeast Queensland, Australia. In addition, 36 water samples were collected from a reservoir and tested for the occurrence of all three bovine feces-associated markers along with fecal indicator bacteria (FIB), Campylobacter spp., Escherichia coli O157, and Salmonella spp. The overall host specificity values of the BacCow-UCD, cowM3, and B-AVs markers to differentiate between bovine and other nontarget host groups were 0.66, 0.88, and 1.00, respectively (maximum value of 1.00). The overall host sensitivity values of these markers, however, in composite bovine wastewater and individual bovine fecal DNA samples were 0.93, 0.90, and 0.60, respectively (maximum value of 1.00). Among the 36 water samples tested, 56%, 22%, and 6% samples were PCR positive for the BacCow-UCD, cowM3, and B-AVs markers, respectively. Among the 36 samples tested, 50% and 14% samples were PCR positive for the Campylobacter 16S rRNA and E. coli O157 rfbE genes, respectively. Based on the results, we recommend that multiple bovine feces-associated markers be used if possible for bovine fecal pollution tracking. Nonetheless, the presence of the multiple bovine feces-associated markers along with the presence of potential zoonotic pathogens indicates bovine fecal pollution in the reservoir water samples. Further research is required to understand the decay rates of these markers in relation to FIB and zoonotic pathogens

    Use of reconstituted metabolic networks to assist in metabolomic data visualization and mining

    Get PDF
    Metabolomics experiments seldom achieve their aim of comprehensively covering the entire metabolome. However, important information can be gleaned even from sparse datasets, which can be facilitated by placing the results within the context of known metabolic networks. Here we present a method that allows the automatic assignment of identified metabolites to positions within known metabolic networks, and, furthermore, allows automated extraction of sub-networks of biological significance. This latter feature is possible by use of a gap-filling algorithm. The utility of the algorithm in reconstructing and mining of metabolomics data is shown on two independent datasets generated with LC–MS LTQ-Orbitrap mass spectrometry. Biologically relevant metabolic sub-networks were extracted from both datasets. Moreover, a number of metabolites, whose presence eluded automatic selection within mass spectra, could be identified retrospectively by virtue of their inferred presence through gap filling

    Study of the chemotactic response of multicellular spheroids in a microfluidic device

    Get PDF
    YesWe report the first application of a microfluidic device to observe chemotactic migration in multicellular spheroids. A microfluidic device was designed comprising a central microchamber and two lateral channels through which reagents can be introduced. Multicellular spheroids were embedded in collagen and introduced to the microchamber. A gradient of fetal bovine serum (FBS) was established across the central chamber by addition of growth media containing serum into one of the lateral channels. We observe that spheroids of oral squamous carcinoma cells OSC–19 invade collectively in the direction of the gradient of FBS. This invasion is more directional and aggressive than that observed for individual cells in the same experimental setup. In contrast to spheroids of OSC–19, U87-MG multicellular spheroids migrate as individual cells. A study of the exposure of spheroids to the chemoattractant shows that the rate of diffusion into the spheroid is slow and thus, the chemoattractant wave engulfs the spheroid before diffusing through it.This work has been supported by National Research Program of Spain (DPI2011-28262-c04-01) and by the project "MICROANGIOTHECAN" (CIBERBBN, IMIBIC and SEOM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Using Genomic Sequencing for Classical Genetics in E. coli K12

    Get PDF
    We here develop computational methods to facilitate use of 454 whole genome shotgun sequencing to identify mutations in Escherichia coli K12. We had Roche sequence eight related strains derived as spontaneous mutants in a background without a whole genome sequence. They provided difference tables based on assembling each genome to reference strain E. coli MG1655 (NC_000913). Due to the evolutionary distance to MG1655, these contained a large number of both false negatives and positives. By manual analysis of the dataset, we detected all the known mutations (24 at nine locations) and identified and genetically confirmed new mutations necessary and sufficient for the phenotypes we had selected in four strains. We then had Roche assemble contigs de novo, which we further assembled to full-length pseudomolecules based on synteny with MG1655. This hybrid method facilitated detection of insertion mutations and allowed annotation from MG1655. After removing one genome with less than the optimal 20- to 30-fold sequence coverage, we identified 544 putative polymorphisms that included all of the known and selected mutations apart from insertions. Finally, we detected seven new mutations in a total of only 41 candidates by comparing single genomes to composite data for the remaining six and using a ranking system to penalize homopolymer sequencing and misassembly errors. An additional benefit of the analysis is a table of differences between MG1655 and a physiologically robust E. coli wild-type strain NCM3722. Both projects were greatly facilitated by use of comparative genomics tools in the CoGe software package (http://genomevolution.org/)

    Detection of Vibrio cholerae and Acanthamoeba species from same natural water samples collected from different cholera endemic areas in Sudan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Vibrio cholerae </it>O1 and <it>V. cholerae </it>O139 infect humans, causing the diarrheal and waterborne disease cholera, which is a worldwide health problem. <it>V. cholerae </it>and the free-living amoebae <it>Acanthamoeba </it>species are present in aquatic environments, including drinking water and it has shown that <it>Acanthamoebae </it>support bacterial growth and survival. Recently it has shown that <it>Acanthamoeba </it>species enhanced growth and survival of <it>V. cholerae </it>O1 and O139. Water samples from different cholera endemic areas in Sudan were collected with the aim to detect both <it>V. cholerae </it>and <it>Acanthamoeba </it>species from same natural water samples by polymerase chain reaction (PCR).</p> <p>Findings</p> <p>For the first time both <it>V. cholerae </it>and <it>Acanthamoeba </it>species were detected in same natural water samples collected from different cholera endemic areas in Sudan. 89% of detected <it>V. cholerae </it>was found with <it>Acanthamoeba </it>in same water samples.</p> <p>Conclusions</p> <p>The current findings disclose <it>Acanthamoedae </it>as a biological factor enhancing survival of <it>V. cholerae </it>in nature.</p
    corecore