202 research outputs found

    HIV Risk and Associations of HIV Infection among men who have sex with men in Peri-Urban Cape Town, South Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV epidemic in Sub Saharan Africa has been traditionally assumed to be driven by high risk heterosexual and vertical transmission. However, there is an increasing body of data highlighting the disproportionate burden of HIV infection among MSM in the generalized HIV epidemics across of Southern Africa. In South Africa specifically, there has been an increase in attention focused on the risk status and preventive needs of MSM both in urban centers and peri-urban townships. The study presented here represents the first evaluation of HIV prevalence and associations of HIV infection among MSM in the peri-urban townships of Cape Town.</p> <p>Methods</p> <p>The study consisted of an anonymous probe of 200 men, reporting ever having had sex with another man, recruited through venue-base sampling from January to February, 2009.</p> <p>Results</p> <p>Overall, HIV prevalence was 25.5% (n = 51/200). Of these prevalent HIV infections, only 6% of HIV-1 infected MSM were aware of their HIV status (3/50). 0% of men reported always having safe sex as defined by always wearing condoms during sex and using water-based lubricants. Independent associations with HIV infection included inconsistent condom use with male partners (aOR 2.3, 95% CI 1.0-5.4), having been blackmailed (aOR 4.4, 95% CI 1.6-20.2), age over 26 years (aOR 4.2, 95% CI 1.6-10.6), being unemployed (aOR 3.7, 95% CI 1.5-9.3), and rural origin (aOR 6.0, 95% CI 2.2-16.7). Bisexual activity was reported by 17.1% (34/199), and a total of 8% (16/200) reported having a regular female partner. Human rights violations were common with 10.5% (n = 21/200) reporting having been blackmailed and 21.0% (n = 42/200) reporting being afraid to seek health care.</p> <p>Conclusions</p> <p>The conclusions from this study include that a there is a high risk and underserved population of MSM in the townships surrounding Cape Town. The high HIV prevalence and high risk sexual practices suggest that prevalence will continue to increase among these men in the context of an otherwise slowing epidemic. These data further highlight the need to better characterize risk factors for HIV prevention and appropriate targeted combination packages of HIV interventions including biomedical, behavioural, and structural approaches to mitigate HIV risk among these men.</p

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    High-Precision, Whole-Genome Sequencing of Laboratory Strains Facilitates Genetic Studies

    Get PDF
    Whole-genome sequencing is a powerful technique for obtaining the reference sequence information of multiple organisms. Its use can be dramatically expanded to rapidly identify genomic variations, which can be linked with phenotypes to obtain biological insights. We explored these potential applications using the emerging next-generation sequencing platform Solexa Genome Analyzer, and the well-characterized model bacterium Bacillus subtilis. Combining sequencing with experimental verification, we first improved the accuracy of the published sequence of the B. subtilis reference strain 168, then obtained sequences of multiple related laboratory strains and different isolates of each strain. This provides a framework for comparing the divergence between different laboratory strains and between their individual isolates. We also demonstrated the power of Solexa sequencing by using its results to predict a defect in the citrate signal transduction pathway of a common laboratory strain, which we verified experimentally. Finally, we examined the molecular nature of spontaneously generated mutations that suppress the growth defect caused by deletion of the stringent response mediator relA. Using whole-genome sequencing, we rapidly mapped these suppressor mutations to two small homologs of relA. Interestingly, stable suppressor strains had mutations in both genes, with each mutation alone partially relieving the relA growth defect. This supports an intriguing three-locus interaction module that is not easily identifiable through traditional suppressor mapping. We conclude that whole-genome sequencing can drastically accelerate the identification of suppressor mutations and complex genetic interactions, and it can be applied as a standard tool to investigate the genetic traits of model organisms

    Native New Zealand plants with inhibitory activity towards Mycobacterium tuberculosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plants have long been investigated as a source of antibiotics and other bioactives for the treatment of human disease. New Zealand contains a diverse and unique flora, however, few of its endemic plants have been used to treat tuberculosis. One plant, <it>Laurelia novae-zelandiae</it>, was reportedly used by indigenous Maori for the treatment of tubercular lesions.</p> <p>Methods</p> <p><it>Laurelia novae-zelandiae </it>and 44 other native plants were tested for direct anti-bacterial activity. Plants were extracted with different solvents and extracts screened for inhibition of the surrogate species, <it>Mycobacterium smegmatis</it>. Active plant samples were then tested for bacteriostatic activity towards <it>M. tuberculosis </it>and other clinically-important species.</p> <p>Results</p> <p>Extracts of six native plants were active against <it>M. smegmatis</it>. Many of these were also inhibitory towards <it>M. tuberculosis </it>including <it>Laurelia novae-zelandiae </it>(Pukatea). <it>M. excelsa </it>(Pohutukawa) was the only plant extract tested that was active against <it>Staphylococcus aureus</it>.</p> <p>Conclusions</p> <p>Our data provide support for the traditional use of Pukatea in treating tuberculosis. In addition, our analyses indicate that other native plant species possess antibiotic activity.</p

    On the Accessibility of Adaptive Phenotypes of a Bacterial Metabolic Network

    Get PDF
    The mechanisms by which adaptive phenotypes spread within an evolving population after their emergence are understood fairly well. Much less is known about the factors that influence the evolutionary accessibility of such phenotypes, a pre-requisite for their emergence in a population. Here, we investigate the influence of environmental quality on the accessibility of adaptive phenotypes of Escherichia coli's central metabolic network. We used an established flux-balance model of metabolism as the basis for a genotype-phenotype map (GPM). We quantified the effects of seven qualitatively different environments (corresponding to both carbohydrate and gluconeogenic metabolic substrates) on the structure of this GPM. We found that the GPM has a more rugged structure in qualitatively poorer environments, suggesting that adaptive phenotypes could be intrinsically less accessible in such environments. Nevertheless, on average ∼74% of the genotype can be altered by neutral drift, in the environment where the GPM is most rugged; this could allow evolving populations to circumvent such ruggedness. Furthermore, we found that the normalized mutual information (NMI) of genotype differences relative to phenotype differences, which measures the GPM's capacity to transmit information about phenotype differences, is positively correlated with (simulation-based) estimates of the accessibility of adaptive phenotypes in different environments. These results are consistent with the predictions of a simple analytic theory that makes explicit the relationship between the NMI and the speed of adaptation. The results suggest an intuitive information-theoretic principle for evolutionary adaptation; adaptation could be faster in environments where the GPM has a greater capacity to transmit information about phenotype differences. More generally, our results provide insight into fundamental environment-specific differences in the accessibility of adaptive phenotypes, and they suggest opportunities for research at the interface between information theory and evolutionary biology

    Pulmonary Vaccination as a Novel Treatment for Lung Fibrosis

    Get PDF
    Pulmonary fibrosis is an untreatable, uniformly fatal disease of unclear etiology that is the result of unremitting chronic inflammation. Recent studies have implicated bone marrow derived fibrocytes and M2 macrophages as playing key roles in propagating fibrosis. While the disease process is characterized by the accumulation of lymphocytes in the lung parenchyma and alveolar space, their role remains unclear. In this report we definitively demonstrate the ability of T cells to regulate lung inflammation leading to fibrosis. Specifically we demonstrate the ability of intranasal vaccinia vaccination to inhibit M2 macrophage generation and fibrocyte recruitment and hence the accumulation of collagen and death due to pulmonary failure. Mechanistically, we demonstrate the ability of lung Th1 cells to prevent fibrosis as vaccinia failed to prevent disease in Rag−/− mice or in mice in which the T cells lacked IFN-γ. Furthermore, vaccination 3 months prior to the initiation of fibrosis was able to mitigate the disease. Our findings clearly demonstrate the role of T cells in regulating pulmonary fibrosis as well as suggest that vaccinia-induced immunotherapy in the lung may prove to be a novel treatment approach to this otherwise fatal disease

    Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll-like receptors (TLRs) have garnered an extraordinary amount of interest in cancer research due to their role in tumor progression. By activating the production of several biological factors, TLRs induce type I interferons and other cytokines, which drive an inflammatory response and activate the adaptive immune system. The aim of this study was to investigate the expression and clinical relevance of TLR3, 4 and 9 in breast cancer.</p> <p>Methods</p> <p>The expression levels of TLR3, TLR4 and TLR9 were analyzed on tumors from 74 patients with breast cancer. The analysis was performed by immunohistochemistry.</p> <p>Results</p> <p>Samples of carcinomas with recurrence exhibited a significant increase in the mRNA levels of TLR3, TLR4 and TLR9. Tumors showed high expression of TLRs expression levels by cancer cells, especially TLR4 and 9. Nevertheless, a significant percentage of tumors also showed TLR4 expression by mononuclear inflammatory cells (21.6%) and TLR9 expression by fibroblast-like cells (57.5%). Tumors with high TLR3 expression by tumor cell or with high TLR4 expression by mononuclear inflammatory cells were significantly associated with higher probability of metastasis. However, tumours with high TLR9 expression by fibroblast-like cells were associated with low probability of metastasis.</p> <p>Conclusions</p> <p>The expression levels of TLR3, TLR4 and TLR9 have clinical interest as indicators of tumor aggressiveness in breast cancer. TLRs may represent therapeutic targets in breast cancer.</p
    corecore