342 research outputs found

    Vascular endothelial growth factor in children with neuroblastoma: a retrospective analysis

    Get PDF
    BACKGROUND: Despite aggressive therapy, advanced stage neuroblastoma patients have poor survival rates. Although angiogenesis correlates with advanced tumour stage and plays an important role in determining the tumour response to treatment in general, clinical data are still insufficient, and more clinical evaluations are needed to draw conclusions. The aim of this study was to evaluate vascular endothelial growth factor (VEGF) expression in patients with neuroblastoma, determine whether it correlates with other prognostic factors and/or therapeutic response, and to assess should VEGF be considered in a routine diagnostic workup. ----- MATERIALS AND METHODS: VEGF expression was determined by immunohistochemistry using anti-VEGF antibody in paraffin embedded primary tumour tissue from 56 neuroblastoma patients. Semiquantitative expression of VEGF was estimated and compared with gender, age, histology, disease stage, therapy, and survival. Statistical analyses, including multivariate analysis, were performed. ----- RESULTS: VEGF expression correlated with disease stage and survival in neuroblastoma patients. Combination of VEGF expression and disease stage as a single prognostic value for survival (P-value = 0.0034; odds ratio (OR) (95%CI) = 26.17 (2.97-230.27) exhibited greater correlation with survival than individually. Hematopoietic stem cell transplantation significantly improved survival of the advanced stage patients with high VEGF expression. ----- CONCLUSION: VEGF expression should be considered in a routine diagnostic workup of children with neuroblastoma, especially in those more than 18 months old and with advanced disease stage. High VEGF expression at the time of disease diagnosis is a bad risk prognostic factor, and can be used to characterize subsets of patients with an unfavourable outcome

    Immunogenic Comparison of Chimeric Adenovirus 5/35 Vector Carrying Optimized Human Immunodeficiency Virus Clade C Genes and Various Promoters

    Get PDF
    Adenovirus vector-based vaccine is a promising approach to protect HIV infection. However, a recent phase IIb clinical trial using the vector did not show its protective efficacy against HIV infection. To improve the vaccine, we explored the transgene protein expression and its immunogenicity using optimized codon usage, promoters and adaptors. We compared protein expression and immunogenicity of adenovirus vector vaccines carrying native or codon usage-optimized HIV-1 clade C gag and env genes expression cassettes driven by different promoters (CMV, CMVi, and CA promoters) and adapters (IRES and F2A). The adenovirus vector vaccine containing optimized gag gene produced higher Gag protein expression and induced higher immune responses than the vector containing native gag gene in mice. Furthermore, CA promoter generated higher transgene expression and elicited higher immune responses than other two popularly used promoters (CMV and CMVi). The second gene expression using F2A adaptor resulted in higher protein expression and immunity than that of using IRES and direct fusion protein. Taken together, the adenovirus vector containing the expression cassette with CA promoter, optimized HIV-1 clade C gene and an F2A adaptor produced the best protein expression and elicited the highest transgene-specific immune responses. This finding would be promising for vaccine design and gene therapy

    Inhibition of N1-Src kinase by a specific SH3 peptide ligand reveals a role for N1-Src in neurite elongation by L1-CAM

    Get PDF
    In the mammalian brain the ubiquitous tyrosine kinase, C-Src, undergoes splicing to insert short sequences in the SH3 domain to yield N1- and N2-Src. We and others have previously shown that the N-Srcs have altered substrate specificity and kinase activity compared to C-Src. However, the exact functions of the N-Srcs are unknown and it is likely that N-Src signalling events have been misattributed to C-Src because they cannot be distinguished by conventional Src inhibitors that target the kinase domain. By screening a peptide phage display library, we discovered a novel ligand (PDN1) that targets the unique SH3 domain of N1-Src and inhibits N1-Src in cells. In cultured neurons, PDN1 fused to a fluorescent protein inhibited neurite outgrowth, an effect that was mimicked by shRNA targeting the N1-Src microexon. PDN1 also inhibited L1-CAM-dependent neurite elongation in cerebellar granule neurons, a pathway previously shown to be disrupted in Src(−/−) mice. PDN1 therefore represents a novel tool for distinguishing the functions of N1-Src and C-Src in neurons and is a starting point for the development of a small molecule inhibitor of N1-Src

    MCOIN: a novel heuristic for determining transcription factor binding site motif width

    Get PDF
    BACKGROUND: In transcription factor binding site discovery, the true width of the motif to be discovered is generally not known a priori. The ability to compute the most likely width of a motif is therefore a highly desirable property for motif discovery algorithms. However, this is a challenging computational problem as a result of changing model dimensionality at changing motif widths. The complexity of the problem is increased as the discovered model at the true motif width need not be the most statistically significant in a set of candidate motif models. Further, the core motif discovery algorithm used cannot guarantee to return the best possible result at each candidate width. RESULTS: We present MCOIN, a novel heuristic for automatically determining transcription factor binding site motif width, based on motif containment and information content. Using realistic synthetic data and previously characterised prokaryotic data, we show that MCOIN outperforms the current most popular method (E-value of the resulting multiple alignment) as a predictor of motif width, based on mean absolute error. MCOIN is also shown to choose models which better match known sites at higher levels of motif conservation, based on ROC analysis. CONCLUSIONS: We demonstrate the performance of MCOIN as part of a deterministic motif discovery algorithm and conclude that MCOIN outperforms current methods for determining motif width

    Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format

    Get PDF
    BACKGROUND: The rice interactome, in which a network of protein-protein interactions has been elucidated in rice, is a useful resource to identify functional modules of rice signal transduction pathways. Protein-protein interactions occur in cells in two ways, constitutive and regulative. While a yeast-based high-throughput method has been widely used to identify the constitutive interactions, a method to detect the regulated interactions is rarely developed for a large-scale analysis. RESULTS: A split luciferase complementation assay was applied to detect the regulated interactions in rice. A transformation method of rice protoplasts in a 96-well plate was first established for a large-scale analysis. In addition, an antibody that specifically recognizes a carboxyl-terminal fragment of Renilla luciferase was newly developed. A pair of antibodies that recognize amino- and carboxyl- terminal fragments of Renilla luciferase, respectively, was then used to monitor quality and quantity of interacting recombinant-proteins accumulated in the cells. For a proof-of-concept, the method was applied to detect the gibberellin-dependent interaction between GIBBERELLIN INSENSITIVE DWARF1 and SLENDER RICE 1. CONCLUSIONS: A method to detect regulated protein-protein interactions was developed towards establishment of the rice interactome

    Metal Ionophore Treatment Restores Dendritic Spine Density and Synaptic Protein Levels in a Mouse Model of Alzheimer's Disease

    Get PDF
    We have previously demonstrated that brief treatment of APP transgenic mice with metal ionophores (PBT2, Prana Biotechnology) rapidly and markedly improves learning and memory. To understand the potential mechanisms of action underlying this phenomenon we examined hippocampal dendritic spine density, and the levels of key proteins involved in learning and memory, in young (4 months) and old (14 months) female Tg2576 mice following brief (11 days) oral treatment with PBT2 (30 mg/kg/d). Transgenic mice exhibited deficits in spine density compared to littermate controls that were significantly rescued by PBT2 treatment in both the young (+17%, p<0.001) and old (+32%, p<0.001) animals. There was no effect of PBT2 on spine density in the control animals. In the transgenic animals, PBT2 treatment also resulted in significant increases in brain levels of CamKII (+57%, p = 0.005), spinophilin (+37%, p = 0.04), NMDAR1A (+126%, p = 0.02), NMDAR2A (+70%, p = 0.05), pro-BDNF (+19%, p = 0.02) and BDNF (+19%, p = 0.04). While PBT2-treatment did not significantly alter neurite-length in vivo, it did increase neurite outgrowth (+200%, p = 0.006) in cultured cells, and this was abolished by co-incubation with the transition metal chelator, diamsar. These data suggest that PBT2 may affect multiple aspects of snaptic health/efficacy. In Alzheimer's disease therefore, PBT2 may restore the uptake of physiological metal ions trapped within extracellular β-amyloid aggregates that then induce biochemical and anatomical changes to improve cognitive function

    Identification of the Regulatory Logic Controlling Salmonella Pathoadaptation by the SsrA-SsrB Two-Component System

    Get PDF
    Sequence data from the past decade has laid bare the significance of horizontal gene transfer in creating genetic diversity in the bacterial world. Regulatory evolution, in which non-coding DNA is mutated to create new regulatory nodes, also contributes to this diversity to allow niche adaptation and the evolution of pathogenesis. To survive in the host environment, Salmonella enterica uses a type III secretion system and effector proteins, which are activated by the SsrA-SsrB two-component system in response to the host environment. To better understand the phenomenon of regulatory evolution in S. enterica, we defined the SsrB regulon and asked how this transcription factor interacts with the cis-regulatory region of target genes. Using ChIP-on-chip, cDNA hybridization, and comparative genomics analyses, we describe the SsrB-dependent regulon of ancestral and horizontally acquired genes. Further, we used a genetic screen and computational analyses integrating experimental data from S. enterica and sequence data from an orthologous regulatory system in the insect endosymbiont, Sodalis glossinidius, to identify the conserved yet flexible palindrome sequence that defines DNA recognition by SsrB. Mutational analysis of a representative promoter validated this palindrome as the minimal architecture needed for regulatory input by SsrB. These data provide a high-resolution map of a regulatory network and the underlying logic enabling pathogen adaptation to a host

    Coffee and tea consumption in relation to inflammation and basal glucose metabolism in a multi-ethnic Asian population: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Higher coffee consumption has been associated with a lower risk of type 2 diabetes in cohort studies, but the physiological pathways through which coffee affects glucose metabolism are not fully understood. The aim of this study was to evaluate the associations between habitual coffee and tea consumption and glucose metabolism in a multi-ethnic Asian population and possible mediation by inflammation.</p> <p>Methods</p> <p>We cross-sectionally examined the association between coffee, green tea, black tea and Oolong tea consumption and glycemic (fasting plasma glucose, HOMA-IR, HOMA-beta, plasma HbA1c) and inflammatory (plasma adiponectin and C-reactive protein) markers in a multi-ethnic Asian population (N = 4139).</p> <p>Results</p> <p>After adjusting for multiple confounders, we observed inverse associations between coffee and HOMA-IR (percent difference: - 8.8% for ≥ 3 cups/day versus rarely or never; <it>P<sub>trend </sub></it>= 0.007), but no significant associations between coffee and inflammatory markers. Tea consumption was not associated with glycemic markers, but green tea was inversely associated with plasma C-reactive protein concentrations (percent difference: - 12.2% for ≥ 1 cup/day versus < 1 cup/week; <it>P<sub>trend </sub></it>= 0.042).</p> <p>Conclusions</p> <p>These data provide additional evidence for a beneficial effect of habitual caffeinated coffee consumption on insulin sensitivity, and suggest that this effect is unlikely to be mediated by anti-inflammatory mechanisms.</p
    corecore