193 research outputs found
STUDY OF IRRADIATED BOTHROPSTOXIN-1 WITH Co-60 GAMMA RAYS: IMMUNE SYSTEM BEHAVIOR
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Ionizing radiation has been successfully employed to modify the immunological properties of biomolecules. Very promising results were obtained when crude animal venoms, as well as isolated toxins, were treated with 60Co gamma rays, yielding toxoids with good immunogenicity. The achievement of modified antigens with lower toxicity and preserved or improved immunogenicity can be very useful. Ionizing radiation has already been proven to be a powerful tool to attenuate snake venom toxicity without affecting, and even increasing, their immunogenic properties. However, little is known about the modifications that irradiated molecules undergo and even less about the immunological response that such antigens elicit. In the present work, we investigated the immunological behavior of bothropstoxin-1, a K49 phospholipase, before and after irradiation. Structural modifications of the toxin were analyzed by SDS-PAGE. Isogenic mice were immunized with either the native or the irradiated toxin. The circulating antibodies were isotyped and titrated by ELISA. According to our data, irradiation promoted structural modifications in the toxin characterized by higher molecular weight forms of proteins (aggregates and oligomers). The results also indicated that irradiated toxins were immunogenic and antibodies elicited by them were able to recognize the native toxin in ELISA. These findings suggest that irradiation of toxic proteins can promote significant modifications in their structures; however they still retain many of the original antigenic and immunological properties of native proteins. Also, our data indicate that irradiated proteins induce higher titers of IgG2a and IgG2b, suggesting that Th1 cells are predominantly involved in the immune response.152216225Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
Study of irradiated bothropstoxin-1 with60Co gamma rays: immune system behavior
Ionizing radiation has been successfully employed to modify the immunological properties of biomolecules. Very promising results were obtained when crude animal venoms, as well as isolated toxins, were treated with 60Co gamma rays, yielding toxoids with good immunogenicity. The achievement of modified antigens with lower toxicity and preserved or improved immunogenicity can be very useful. Ionizing radiation has already been proven to be a powerful tool to attenuate snake venom toxicity without affecting, and even increasing, their immunogenic properties. However, little is known about the modifications that irradiated molecules undergo and even less about the immunological response that such antigens elicit. In the present work, we investigated the immunological behavior of bothropstoxin-1, a K49 phospholipase, before and after irradiation. Structural modifications of the toxin were analyzed by SDS-PAGE. Isogenic mice were immunized with either the native or the irradiated toxin. The circulating antibodies were isotyped and titrated by ELISA. According to our data, irradiation promoted structural modifications in the toxin characterized by higher molecular weight forms of proteins (aggregates and oligomers). The results also indicated that irradiated toxins were immunogenic and antibodies elicited by them were able to recognize the native toxin in ELISA. These findings suggest that irradiation of toxic proteins can promote significant modifications in their structures; however they still retain many of the original antigenic and immunological properties of native proteins. Also, our data indicate that irradiated proteins induce higher titers of IgG2a and IgG2b, suggesting that Th1 cells are predominantly involved in the immune response
Consistent Long-Term Therapeutic Efficacy of Human Umbilical Cord Matrix-Derived Mesenchymal Stromal Cells After Myocardial Infarction Despite Individual Differences and Transient Engraftment
Human mesenchymal stem cells gather special interest as a universal and feasible add-on therapy for myocardial infarction (MI). In particular, human umbilical cord matrix-derived mesenchymal stromal cells (UCM-MSC) are advantageous since can be easily obtained and display high expansion potential. Using isolation protocols compliant with cell therapy, we previously showed UCM-MSC preserved cardiac function and attenuated remodeling 2 weeks after MI. In this study, UCM-MSC from two umbilical cords, UC-A and UC-B, were transplanted in a murine MI model to investigate consistency and durability of the therapeutic benefits. Both cellular products improved cardiac function and limited adverse cardiac remodeling 12 weeks post-ischemic injury, supporting sustained and long-term beneficial therapeutic effect. Donor associated variability was found in the modulation of cardiac remodeling and activation of the Akt-mTOR-GSK3ß survival pathway. In vitro, the two cell products displayed similar ability to induce the formation of vessel-like structures and comparable transcriptome in normoxia and hypoxia, apart from UCM-MSCs proliferation and expression differences in a small subset of genes associated with MHC Class I. These findings support that UCM-MSC are strong candidates to assist the treatment of MI whilst calling for the discussion on methodologies to characterize and select best performing UCM-MSC before clinical application.This work was funded by European Structural and Investment Funds (ESIF), under Lisbon Portugal Regional Operational Programme and National Funds through Fundação para a Ciência e Tecnologia (FCT) ([POCI-01-0145-FEDER-030985], [POCI-01-0145-FEDER-016385]); by FCT/Ministério da Ciência, Tecnologia e Inovação in the framework of individual funding [CEECINST/00091/2018] to DN and by QREN funds through the project ClinUCX (QREN 30196) and individual fellowships: [PD/BD/127997/2016] to TL, [SFRH/BD/144490/2019] to RG and [SFRH/BD/111799/2015] to VS-P. The funding bodies other than ECBio had no role in design, in the collection, analysis, and interpretation of data; in the writing of the manuscript; or in the decision to submit the manuscript for publication
Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress
This review explores how imaging techniques are being developed with a focus on deployment for crop monitoring methods. Imaging applications are discussed in relation to both field and glasshouse-based plants, and techniques are sectioned into ‘healthy and diseased plant classification’ with an emphasis on classification accuracy, early detection of stress, and disease severity. A central focus of the review is the use of hyperspectral imaging and how this is being utilised to find additional information about plant health, and the ability to predict onset of disease. A summary of techniques used to detect biotic and abiotic stress in plants is presented, including the level of accuracy associated with each method
- …