41 research outputs found
APC Activation Restores Functional CD4+CD25+ Regulatory T Cells in NOD Mice that Can Prevent Diabetes Development
BACKGROUND: Defects in APC and regulatory cells are associated with diabetes development in NOD mice. We have shown previously that NOD APC are not effective at stimulating CD4(+)CD25(+) regulatory cell function in vitro. We hypothesize that failure of NOD APC to properly activate CD4(+)CD25(+) regulatory cells in vivo could compromise their ability to control pathogenic cells, and activation of NOD APC could restore this defect, thereby preventing disease. METHODOLOGY/PRINCIPAL FINDINGS: To test these hypotheses, we used the well-documented ability of complete Freund's adjuvant (CFA), an APC activator, to prevent disease in NOD mice. Phenotype and function of CD4(+)CD25(+) regulatory cells from untreated and CFA-treated NOD mice were determined by FACS, and in vitro and in vivo assays. APC from these mice were also evaluated for their ability to activate regulatory cells in vitro. We have found that sick NOD CD4(+)CD25(+) cells expressed Foxp3 at the same percentages, but decreased levels per cell, compared to young NOD or non-NOD controls. Treatment with CFA increased Foxp3 expression in NOD cells, and also increased the percentages of CD4(+)CD25(+)Foxp3(+) cells infiltrating the pancreas compared to untreated NOD mice. Moreover, CD4(+)CD25(+) cells from pancreatic LN of CFA-treated, but not untreated, NOD mice transferred protection from diabetes. Finally, APC isolated from CFA-treated mice increased Foxp3 and granzyme B expression as well as regulatory function by NOD CD4(+)CD25(+) cells in vitro compared to APC from untreated NOD mice. CONCLUSIONS/SIGNIFICANCE: These data suggest that regulatory T cell function and ability to control pathogenic cells can be enhanced in NOD mice by activating NOD APC
Chemical Addressability of Ultraviolet-Inactivated Viral Nanoparticles (VNPs)
. Thus, inactivation of the virus RNA genome is important for biosafety considerations, however the surface characteristics and chemical reactivity of the particles must be maintained in order to preserve chemical and structural functionality. were shown to maintain particle structure and chemical reactivity, and cellular binding properties were similar to CPMV-WT. applications
Response of Methicillin-Resistant Staphylococcus aureus to Amicoumacin A
Amicoumacin A exhibits strong antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), hence we sought to uncover its mechanism of action. Genome-wide transcriptome analysis of S. aureus COL in response to amicoumacin A showed alteration in transcription of genes specifying several cellular processes including cell envelope turnover, cross-membrane transport, virulence, metabolism, and general stress response. The most highly induced gene was lrgA, encoding an antiholin-like product, which is induced in cells undergoing a collapse of Δψ. Consistent with the notion that LrgA modulates murein hydrolase activity, COL grown in the presence of amicoumacin A showed reduced autolysis, which was primarily caused by lower hydrolase activity. To gain further insight into the mechanism of action of amicoumacin A, a whole genome comparison of wild-type COL and amicoumacin A-resistant mutants isolated by a serial passage method was carried out. Single point mutations generating codon substitutions were uncovered in ksgA (encoding RNA dimethyltransferase), fusA (elongation factor G), dnaG (primase), lacD (tagatose 1,6-bisphosphate aldolase), and SACOL0611 (a putative glycosyl transferase). The codon substitutions in EF-G that cause amicoumacin A resistance and fusidic acid resistance reside in separate domains and do not bring about cross resistance. Taken together, these results suggest that amicoumacin A might cause perturbation of the cell membrane and lead to energy dissipation. Decreased rates of cellular metabolism including protein synthesis and DNA replication in resistant strains might allow cells to compensate for membrane dysfunction and thus increase cell survivability
Plant viral genes in DNA idiotypic vaccines activate linked CD4+ T-cell mediated immunity against B-cell malignancies
DNA delivery of tumor antigens can activate specific immune attack on cancer cells. However, antigens may be weak, and immune capacity can be compromised. Fusion of genes encoding activating sequences to the tumor antigen sequence facilitates promotion and manipulation of effector pathways. Idiotypic determinants of B-cell tumors, encoded by the variable region genes, are clone-specific tumor antigens. When assembled as single-chain Fv (scFv) alone in a DNA vaccine, immunogenicity is low. Previously, we found that fusion of a sequence from tetanus toxin (fragment C; FrC) promoted anti-idiotypic protection against lymphoma and myeloma. We have now investigated an alternative fusion gene derived from a plant virus, potato virus X coat protein, a primary antigen in humans. When fused to scFv, the self-aggregating protein generates protection against lymphoma and myeloma. In contrast to scFv?FrC, protection against lymphoma is mediated by CD4+ T cells, as is protection against myeloma. Plant viral proteins offer new opportunities to activate immunity against linked T-cell epitopes to attack cancer
Invasive Salix fragilis: altered metabolic patterns in Australian streams
Willows (Salix spp.) are listed as a weed of national significance in Australia. Despite this recognition, functional effects of willows on streams compared to native species are largely unknown. Leaves supply carbon to instream food webs, but may also act as surfaces for biofilm, and thus can contribute in different ways to stream metabolism. Salix fragilis L. and Eucalyptus camaldulensis Dehnh. leaves that had been colonised by biofilms were placed into chambers in laboratory conditions, and metabolic rates were measured. Gross Primary Production (GPP) of biofilms on E. camaldulensis leaves after 10 days of incubation were significantly greater than biofilms on S. fragilis leaves. S. fragilis leaves displayed greater rates of microbial decomposition per leaf mass. Autotrophic biomass was one hundred fold greater on E. camaldulensis leaves. The biofilm on E. camaldulensis leaves is likely to support a greater population of grazers, compared to S. fragilis. The alien S. fragilis leaves, therefore, are fuelling a different component of the food web to endemic E. camaldulensis leaves. Endemic Eucalyptus spp. leaves play an important role in temperate Australian streams as a substrate for autotrophic growth and provide a year round pathway for carbon to reach secondary invertebrate consumer