16 research outputs found

    Impact of Daily Thermocycles on Hatching Rhythms, Larval Performance and Sex Differentiation of Zebrafish

    Get PDF
    In the wild, water temperature cycles daily: it warms up after sunrise, and cools rapidly after sunset. Surprisingly, the impact of such daily thermocycles during the early development of fish remains neglected. We investigated the influence of constant vs daily thermocycles in zebrafish, from embryo development to sexual differentiation, by applying four temperature regimens: two constant (24°C and 28°C) and two daily thermocycles: 28:24°C, TC (thermophase coinciding with daytime, and cryophase coinciding with night-time) and 24:28°C, CT (opposite to TC) in a 12:12 h light:dark cycle (LD). Embryo development was temperature-dependent but enhanced at 28°C and TC. Hatching rhythms were diurnal (around 4 h after lights on), but temperature- and cycle-sensitive, since hatching occurred sooner at 28°C (48 hours post fertilization; hpf) while it was delayed at 24°C (96 hpf). Under TC, hatching occurred at 72 hpf, while under CT hatching displayed two peaks (at 70 hpf and 94 hpf). In constant light (LL) or darkness (DD), hatching rhythms persisted with tau close to 24 h, suggesting a clock-controlled "gating" mechanism. Under 28°C or TC, larvae showed the best performance (high growth and survival, and low malformations). The sex ratio was strongly influenced by temperature, as the proportion of females was higher in CT and TC (79 and 83% respectively), contrasting with 28°C and 24°C, which led to more males (83 and 76%). Ovarian aromatase (cyp19a) expression in females was highest in TC and CT (6.5 and 4.6 fold higher than at 28°C, respectively); while anti-müllerian hormone (amh) expression in males increased in testis at 24°C (3.6 fold higher compared to TC) and particularly at 28°C (14.3 fold increase). Taken together, these findings highlight the key role of environmental cycles during early development, which shaped the daily rhythms in fish embryo and larvae, and ultimately influenced sex differentiation

    Clock genes and their genomic distributions in three species of salmonid fishes: Associations with genes regulating sexual maturation and cell cycling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clock family genes encode transcription factors that regulate clock-controlled genes and thus regulate many physiological mechanisms/processes in a circadian fashion. Clock1 duplicates and copies of Clock3 and NPAS2-like genes were partially characterized (genomic sequencing) and mapped using family-based indels/SNPs in rainbow trout (RT)(<it>Oncorhynchus mykiss</it>), Arctic charr (AC)(<it>Salvelinus alpinus</it>), and Atlantic salmon (AS)(<it>Salmo salar</it>) mapping panels.</p> <p>Results</p> <p>Clock1 duplicates mapped to linkage groups RT-8/-24, AC-16/-13 and AS-2/-18. Clock3/NPAS2-like genes mapped to RT-9/-20, AC-20/-43, and AS-5. Most of these linkage group regions containing the Clock gene duplicates were derived from the most recent 4R whole genome duplication event specific to the salmonids. These linkage groups contain quantitative trait loci (QTL) for life history and growth traits (i.e., reproduction and cell cycling). Comparative synteny analyses with other model teleost species reveal a high degree of conservation for genes in these chromosomal regions suggesting that functionally related or co-regulated genes are clustered in syntenic blocks. For example, anti-müllerian hormone (amh), regulating sexual maturation, and ornithine decarboxylase antizymes (oaz1 and oaz2), regulating cell cycling, are contained within these syntenic blocks.</p> <p>Conclusions</p> <p>Synteny analyses indicate that regions homologous to major life-history QTL regions in salmonids contain many candidate genes that are likely to influence reproduction and cell cycling. The order of these genes is highly conserved across the vertebrate species examined, and as such, these genes may make up a functional cluster of genes that are likely co-regulated. CLOCK, as a transcription factor, is found within this block and therefore has the potential to cis-regulate the processes influenced by these genes. Additionally, clock-controlled genes (CCGs) are located in other life-history QTL regions within salmonids suggesting that at least in part, trans-regulation of these QTL regions may also occur via Clock expression.</p

    Hypoxia induces the expression of transketolase-like 1 in human colorectal cancer

    Get PDF
    Background and Aims: Transketolase-like (TKTL) 1 is one of the key enzymes for anaerobic sugar degradation even in the presence of oxygen (aerobic glycolysis). Transketolase-dependent reactions supply malignant tumors with ribose and NADPH. Therefore, TKTL1 activity could be crucial for tumor proliferation and survival. The aim of the study was to evaluate the expression of TKTL1 in colorectal cancer (CRC) and its regulation under hypoxic conditions. Methods: We studied TKTL1 mRNA and protein expression in CRC cell lines and human CRC biopsies by quantitative real-time PCR, Western blotting and immunohistochemistry. Regulation of TKTL1 under oxygen depletion was analyzed by cultivating cells either in a three-dimensional spheroid model or in a hypoxia incubator chamber. Results: TKTL1 mRNA was heterogeneously expressed in monolayers of cells with high levels in HT-29 and SW480. TKTL1 protein was also clearly detectable in HT-29 and SW480. Hypoxia-inducible factor (HIF)-1α protein expression correlated with TKTL1 protein expression in SW480 spheroids over time. On the one hand, induction of hypoxia in T84 spheroids did not induce TKTL1; on the other hand, hypoxia by incubation at 1% O2 in a hypoxia incubator chamber clearly showed an upregulation of TKTL1. In 50% of CRC patients, TKTL1 protein expression was upregulated in tumor compared to non-tumor tissue. The immunohistochemical staining of TKTL1 in CRC patient samples resulted in 14 positive and 30 negative samples. Conclusions: TKTL1 expression correlated with HIF-1α protein expression and was induced upon hypoxic conditions which could facilitate energy supply to tumors under these circumstances. © 2013 S. Karger AG, Basel
    corecore