14 research outputs found

    Evaluation of Common Methods for Sampling Invertebrate Pollinator Assemblages: Net Sampling Out-Perform Pan Traps

    Get PDF
    Methods for sampling ecological assemblages strive to be efficient, repeatable, and representative. Unknowingly, common methods may be limited in terms of revealing species function and so of less value for comparative studies. The global decline in pollination services has stimulated surveys of flower-visiting invertebrates, using pan traps and net sampling. We explore the relative merits of these two methods in terms of species discovery, quantifying abundance, function, and composition, and responses of species to changing floral resources. Using a spatially-nested design we sampled across a 5000 km2 area of arid grasslands, including 432 hours of net sampling and 1296 pan trap-days, between June 2010 and July 2011. Net sampling yielded 22% more species and 30% higher abundance than pan traps, and better reflected the spatio-temporal variation of floral resources. Species composition differed significantly between methods; from 436 total species, 25% were sampled by both methods, 50% only by nets, and the remaining 25% only by pans. Apart from being less comprehensive, if pan traps do not sample flower-visitors, the link to pollination is questionable. By contrast, net sampling functionally linked species to pollination through behavioural observations of flower-visitation interaction frequency. Netted specimens are also necessary for evidence of pollen transport. Benefits of net-based sampling outweighed minor differences in overall sampling effort. As pan traps and net sampling methods are not equivalent for sampling invertebrate-flower interactions, we recommend net sampling of invertebrate pollinator assemblages, especially if datasets are intended to document declines in pollination and guide measures to retain this important ecosystem service. © 2013 Popic et al

    Flower-visitor networks only partially predict the function of pollen transport by bees

    Full text link
    Mutualistic networks display distinct structural and organizational features such as nestedness, power-law degree distribution and asymmetric dependencies. Attention is now focused on how these structural properties influence network function. Most plant-pollinator networks are constructed using records of animals contacting flowers, which is based on the assumption that all visitors to flowers are pollinators; however, animals may visit flowers as nectar robbers, florivores, or to prey upon other visitors. To differentiate potential pollinator interactions from other interaction types, we examined individual bees that had visited flowers to detect if they carried pollen. Using these data, we constructed visitation and pollen-transport networks for a spinifex-dominated arid zone grassland. To determine how the structure of the visitation network reflects pollen transport, we compared the two networks using a null model approach to account for differences in network size. Differences in number of species, nestedness and connectance observed between the visitation and pollen-transport networks were within expected ranges generated under the null model. The pollen-transport network was more specialized, had lower interaction evenness, and fewer links compared to the visitation network. Almost half the number of species of the visitation network participated in the pollen-transport network, and one-third of unique visitation interactions resulted in pollen transport, highlighting that visitation does not always result in pollination. Floral visitor data indicate potential pollen transporters, but inferring pollination function from visitation networks needs to be performed cautiously as pollen transport resulted from both common and rare interactions, and depended on visitor identity. Although visitation and pollen-transport networks are structurally similar, the function of all species cannot be predicted from the visitation network alone. Considering pollen transport in visitation networks is a simple first step towards determining pollinators from non-pollinators. This is fundamental for understanding how network structure relates to network function. © 2012 The Authors. Austral Ecology © 2012 Ecological Society of Australia

    Cheater or mutualist? Novel florivory interaction between nectar-rich Crotalaria cunninghamii and small mammals

    Full text link
    © 2016 Ecological Society of Australia. Animals visit flowers to access resources and by moving pollen to conspecific individuals act as pollinators. While biotic pollinators can increase the seed set of plants, other flower visitors can reduce seed set directly by damaging vital reproductive organs and indirectly by affecting the way the plant interacts with subsequent flower visitors. It is, therefore, vital to understand the varied effects of all visitors and not only pollinators on plant fitness, including those visitors that are temporally or spatially rare. We document the first known case of flower visitation by small mammals to Crotalaria cunninghamii (Fabaceae), a plant species morphologically suited to bird pollination. During a rain-driven resource pulse in the Simpson Desert in 2011, the rodents Mus musculus (Muridae) and Pseudomys hermannsburgensis (Muridae) visited flowers to remove nectar by puncturing the calyx. We investigated the effects of this novel interaction on the reproductive output of C.cunninghamii. Compared with another recent resource pulse in 2007, plants flowering during mammal visitation had five times as many inflorescences per plant, 90% more flowers per inflorescence, and two to three times more nectar per flower, but this nectar was 30% less sugar rich. Concurrently, rodent plagues were up to three times larger during this rain-driven resource pulse than during a previous pulse in 2007. Up to 75% of flowers had evidence of small mammal florivory, but this was not necessarily destructive, as up to 90% of fruit had the remains of florivory. Through a series of exclusion experiments, we found that small mammal florivory did not directly reduce seed set. We conclude that rain-driven resource pulses led to a unique combination of events that facilitated the novel florivory interaction. Our findings emphasize the dynamic nature of biotic interactions and the importance of testing the role of all visitors to pollination services

    Determinants of Spatial Distribution in a Bee Community: Nesting Resources, Flower Resources, and Body Size

    Get PDF
    Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500-1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks
    corecore