33 research outputs found

    Ferritins: furnishing proteins with iron

    Get PDF
    Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores and examine in detail how three selected ferritins oxidise Fe2+ in order to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins

    Determination of Preferred pH for Root-knot Nematode Aggregation Using Pluronic F-127 Gel

    Get PDF
    Root-knot nematodes (Meloidogyne spp.) are obligate endoparasites of a wide range of plant species. The infective stage is attracted strongly to and enters host roots at the zone of elongation, but the compounds responsible for this attraction have not been identified. We developed a simple assay to investigate nematode response to chemical gradients that uses Pluronic F-127, a synthetic block copolymer that, as a 23% aqueous solution, forms a liquid at low temperature and a gel at room temperature. Test chemicals are put into a modified pipette tip, or ‘chemical dispenser,’ and dispensers are inserted into the gel in which nematodes have been dispersed. Meloidogyne hapla is attracted to pH gradients formed by acetic acid and several other Brþnsted acids and aggregates between pH 4.5 and 5.4. While this pH range was attractive to all tested root-knot nematode strains and species, the level of aggregation depended on the species/strain assessed. For actively growing roots, the pH at the root surface is most acidic at the zone of elongation. This observation is consistent with the idea that low pH is an attractant for nematodes. Root-knot nematodes have been reported to be attracted to carbon dioxide, but our experiments suggest that the observed attraction may be due to acidification of solutions by dissolved CO2 rather than to CO2 itself. These results suggest that Pluronic F-127 gel will be broadly applicable for examining responses of a range of organisms to chemical gradients or to each other

    Conservation and divergence within the clathrin interactome of <i>Trypanosoma cruzi</i>

    Get PDF
    Trypanosomatids are parasitic protozoa with a significant burden on human health. African and American trypanosomes are causative agents of Nagana and Chagas disease respectively, and speciated about 300 million years ago. These parasites have highly distinct life cycles, pathologies, transmission strategies and surface proteomes, being dominated by the variant surface glycoprotein (African) or mucins (American) respectively. In African trypanosomes clathrin-mediated trafficking is responsible for endocytosis and post-Golgi transport, with several mechanistic aspects distinct from higher organisms. Using clathrin light chain (TcCLC) and EpsinR (TcEpsinR) as affinity handles, we identified candidate clathrin-associated proteins (CAPs) in Trypanosoma cruzi; the cohort includes orthologs of many proteins known to mediate vesicle trafficking, but significantly not the AP-2 adaptor complex. Several trypanosome-specific proteins common with African trypanosomes, were also identified. Fluorescence microscopy revealed localisations for TcEpsinR, TcCLC and TcCHC at the posterior region of trypomastigote cells, coincident with the flagellar pocket and Golgi apparatus. These data provide the first systematic analysis of clathrin-mediated trafficking in T. cruzi, allowing comparison between protein cohorts and other trypanosomes and also suggest that clathrin trafficking in at least some life stages of T. cruzi may be AP-2-independent

    New live screening of plant-nematode interactions in the rhizosphere

    Get PDF
    Abstract Free living nematodes (FLN) are microscopic worms found in all soils. While many FLN species are beneficial to crops, some species cause significant damage by feeding on roots and vectoring viruses. With the planned legislative removal of traditionally used chemical treatments, identification of new ways to manage FLN populations has become a high priority. For this, more powerful screening systems are required to rapidly assess threats to crops and identify treatments efficiently. Here, we have developed new live assays for testing nematode responses to treatment by combining transparent soil microcosms, a new light sheet imaging technique termed Biospeckle Selective Plane Illumination Microscopy (BSPIM) for fast nematode detection, and Confocal Laser Scanning Microscopy for high resolution imaging. We show that BSPIM increased signal to noise ratios by up to 60 fold and allowed the automatic detection of FLN in transparent soil samples of 1.5 mL. Growing plant root systems were rapidly scanned for nematode abundance and activity, and FLN feeding behaviour and responses to chemical compounds observed in soil-like conditions. This approach could be used for direct monitoring of FLN activity either to develop new compounds that target economically damaging herbivorous nematodes or ensuring that beneficial species are not negatively impacted

    Volatile Organic Compounds Emitted by Fungal Associates of Conifer Bark Beetles and their Potential in Bark Beetle Control

    Full text link

    Applying the techniques of neutralization to the study of cybercrime

    No full text
    Cybercrime scholars have used a wide range of criminological theories to understand crime and deviance within digital contexts. Among the most frequently cited theoretical frameworks used in this space has been the techniques of neutralization, ïŹrst proposed by Gresham Sykes and David Matza. This body of work has demonstrated the myriad ways that individual cyber-delinquents have applied the techniques of neutralization as a justiïŹcation for their deviance. A thorough review of this research reveals decidedly mixed support for neutralization theory. This chapter provides an in-depth review of these studies and seeks to account for this mixed result. This is done by chronicling the methodological underpinnings of this work, and in doing so highlights the challenges facing this literature with respect to the conceptualization and measurement of Sykes and Matza’s theory in the cyber realm. This is accomplished in two parts. First, we review the body of literature that analyzes the techniques of neutralization as a single combined construct (i.e., items are combined to produce a single measure of neutralization), and ïŹ‚ag some of the advantages, but also pitfalls of this approach. Second, we review the treatment of individual techniques of neutralization as distinct constructs within the literature (i.e., a technique is measured and analyzed separate to others) and detail some of the common methodological hurdles encountered by researchers. The chapter concludes by elaborating on persistent gaps or challenges posed in making such assessments and proposes a path forward for future cybercrime research incorporating this framework.Russell Brewer, Sarah Fox, Caitlan Mille
    corecore