12 research outputs found

    A cross-sectional testing of The Iowa Personality Disorder Screen in a psychiatric outpatient setting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients suspected of personality disorders (PDs) by general practitioners are frequently referred to psychiatric outpatient clinics (POCs). In that setting an effective screening instrument for PDs would be helpful due to resource constraints. This study evaluates the properties of The Iowa Personality Disorder Screen (IPDS) as a screening instrument for PDs at a POC.</p> <p>Methods</p> <p>In a cross-sectional design 145 patients filled in the IPDS and were examined with the SCID-II interview as reference. Various case-findings properties were tested, interference of socio-demographic and other psychopathology were investigated by logistic regression and relationships of the IPDS and the concept of PDs were studied by a latent variable path analysis.</p> <p>Results</p> <p>We found that socio-demographic and psychopathological factors hardly disturbed the IPDS as screening instrument. With a cut-off ≥4 the 11 items IPDS version had sensitivity 0.77 and specificity 0.71. A brief 5 items version showed sensitivity 0.82 and specificity 0.74 with cut-off ≥ 2. With exception for one item, the IPDS variables loaded adequately on their respective first order variables, and the five first order variables loaded in general adequately on their second order variable.</p> <p>Conclusion</p> <p>Our results support the IPDS as a useful screening instrument for PDs present or absent in the POC setting.</p

    Light in the Polar Night

    Get PDF
    How much light isa vailable for biological processes during Polar Night? This question appears simple enough. But the reality is that conventional light sen- sors for measuring visible light (~350 to ~700 nm) have not been sensitive enough to answer it. Beyond this technical challenge, “light” is a general term that must be qualified in terms of “light climate” before it has meaning for biological systems. In this chapter, we provide an answer to the question posed above and explore aspects of light climate during Polar Night with relevance to biology, specifically, how Polar Night is defined by solar elevation, atmospheric light in Polar Night and its propaga- tion underwater, bioluminescence in Polar Night and the concept of Polar Night as a deep-sea analogue, light pollution, and future perspectives. This chapter focuses on the quantity and quality of light present during Polar Night, while subsequent chapters in this volume focus on specific biological effects of this light for algae (Chap. “Marine Micro- and Macroalgae in the Polar Night”), zooplankton (Chaps.“Zooplankton in the Polar Night” and “Biological Clocks and Rhythms in Polar Organisms”), and fish (Chap. “Fish Ecology in the Polar Night”)

    Drivers of Concentrated Predation in an Antarctic Marginal-ice-zone Food Web

    No full text
    Predators impact preyscapes (3-D distribution of forage species) by consuming prey according to their abilities or by altering prey behavior as they avoid being consumed. We elucidate prey (Antarctic silverfish[Pleuragramma antarctica] and crystal krill[Euphausia chrystallorophias]) responses to predation associated with the marginal ice zone (MIZ) of the McMurdo Sound, Antarctica, polynya. Prey abundance and habitat was sampled across a 30 × 15 km area by remotely-operated vehicle, and included locations that were accessible (ice edge) or inaccessible (solid fast ice) to air-breathing predators. Prey and habitat sampling coincided with bio-logging of Adélie penguins and observations of other air-breathing predators (penguins, seals, and whales), all of which were competing for the same prey. Adélie penguins dived deeper, and more frequently, near the ice edge. Lowered abundance of krill at the ice edge indicated they were depleted or were responding to increased predation and/or higher light levels along the ice edge. Penguin diet shifted increasingly to silverfish from krill during sampling, and was correlated with the arrival of krill-eating whales. Behaviorally-mediated, high trophic transfer characterizes the McMurdo Sound MIZ, and likely other MIZs, warranting more specific consideration in food web models and conservation efforts

    Genetic variation and shared biological susceptibility underlying comorbidity in neuropsychiatry

    No full text
    Genetic factors underlying alcoholism, substance abuse, antisocial and violent behaviour, psychosis, schizophrenia and psychopathy are emerging to implicate dopaminergic and cannabinoid, but also monoaminergic and glutamatergic systems through the maze of promoter genes and polymorphisms. Candidate gene association studies suggest the involvement of a range of genes in different disorders of CNS structure and function. Indices of comorbidity both complicate the array of gene-involvement and provide a substrate of hazardous interactivity. The putative role of the serotonin transporter gene in affective-dissociative spectrum disorders presents both plausible genetic variation and complication of comorbidity. The position of genetic variation is further complicated through ethnic, contextual and social factors that provide geometric progressions in the comordity already underlying diagnostic obstacles. The concept of shared biological susceptibilty to two or more disorder conditions of comorbidity seems a recurring observation, e.g., bipolar disorder with alcoholism or schizophrenia with alcohol/substance abuse or diabetes with schizopsychotic disorder. Several lines of evidence seem to suggest that the factors influencing variation in one set of symptoms and those affecting one or more disorders are observed to a marked extent which ought to facilitate the search for susceptibility genes in comorbid brain disorders. Identification of regional genetic factors is awaited for a more compelling outline that ought eventually to lead to greater efficacy of symptom-disorder arrangements and an augmentation of current pharmacological treatment therapies
    corecore