25 research outputs found

    eNOS Protects from Atherosclerosis Despite Relevant Superoxide Production by the Enzyme in apoE−/− Mice

    Get PDF
    All three nitric oxide synthase (NOS) isoforms are expressed in atherosclerotic plaques. NOS enzymes in general catalyse NO production. However, under conditions of substrate and cofactor deficiency, the enzyme directly catalyse superoxide formation. Considering this alternative chemistry, the effects of NOS on key events in spontaneous hyperlipidemia driven atherosclerosis have not been investigated yet. Here, we evaluate how endothelial nitric oxide synthase (eNOS) modulates leukocyte/endothelial- (L/E) and platelet/endothelial- (P/E) interactions in atherosclerosis and the production of nitric oxide (NO) and superoxide by the enzyme. Intravital microscopy (IVM) of carotid arteries revealed significantly increased L/E-interactions in apolipoproteinE/eNOS double knockout mice (apoE(-/-)/eNOS(-/-)), while P/E-interactions did not differ, compared to apoE(-/-). eNOS deficiency increased macrophage infiltration in carotid arteries and vascular cell adhesion molecule-1 (VCAM-1) expression, both in endothelial and smooth muscle cells. Despite the expression of other NOS isoforms (inducible NOS, iNOS and neuronal NOS, nNOS) in plaques, Electron Spin Resonance (ESR) measurements of NO showed significant contribution of eNOS to total circulating and vascular wall NO production. Pharmacological inhibition and genetic deletion of eNOS reduced vascular superoxide production, indicating uncoupling of the enzyme in apoE(-/-) vessels. Overt plaque formation, increased vascular inflammation and L/E- interactions are associated with significant reduction of superoxide production in apoE(-/-)/eNOS(-/-) vessels. Therefore, lack of eNOS does not cause an automatic increase in oxidative stress. Uncoupling of eNOS occurs in apoE(-/-) atherosclerosis but does not negate the enzyme's strong protective effects

    Acute exacerbation of idiopathic pulmonary fibrosis: a proposal

    Full text link
    Acute exacerbation of idiopathic pulmonary fibrosis (IPF) occurs in roughly 10% of patients annually, and is a leading cause of morbidity and mortality in this disease. While currently defined as idiopathic acute worsenings, acute exacerbations of IPF may in fact have a variety of causes, in particular infection and aspiration. Central to the pathobiology of clinically meaningful events is a diffuse injury to the IPF lung manifest histopathologically as diffuse alveolar damage, and biologically as accelerated alveolar epithelial cell injury or repair. Based on these recent observations, we propose a new paradigm for acute exacerbation of IPF that removes the idiopathic requirement and focuses on the pathophysiological mechanism involved

    The photocatalytic decomposition of chloroform by tetrachloroaurate(III)

    No full text
    Near-UV irradiation of solutions of (Bu4N)AuCl4 in aerated ethanol-stabilized chloroform causes the continuous decomposition of chloroform, as evidenced by the production of many equivalents of HCl and peroxides. At the outset of irradiation, most of the AuCl4 − is reduced to AuCl2 −, but the reduction stops and is reversed. The same experiments done in ethanol-free chloroform cause chloroform decomposition only until the irreversible reduction of the gold is complete. In deoxygenated ethanol-free chloroform, irreversible reduction to AuCl2 − is accompanied by the formation of HCl and CCl4, while the main decomposition products in deoxygenated ethanol-stabilized chloroform are HCl and C2Cl6. It is proposed that, in ethanol-free chloroform, photoreduction of AuCl4 − begins with the concerted elimination of HCl from an association complex of CHCl3 with AuCl4 −, and that ethanol suppresses{CHCl3⋅AuCl−4}{CHCl3⋅AuCl4−} complex formation, leaving a slower radical process to carry out the photoreduction of AuCl4 − in ethanol-stabilized chloroform. In the presence of oxygen, the radical process causes a build-up of CCl3OOH, which reoxidizes AuCl2 − to AuCl4 − and allows the photodecomposition of CHCl3 to continue indefinitely
    corecore