18 research outputs found

    Vitamin D Deficiency and Exogenous Vitamin D Excess Similarly Increase Diffuse Atherosclerotic Calcification in Apolipoprotein E Knockout Mice

    Get PDF
    Background: Observational data associate lower levels of serum vitamin D with coronary artery calcification, cardiovascular events and mortality. However, there is little interventional evidence demonstrating that moderate vitamin D deficiency plays a causative role in cardiovascular disease. This study examined the cardiovascular effects of dietary vitamin D deficiency and of vitamin D receptor agonist (paricalcitol) administration in apolipoprotein E knockout mice. Methods: Mice were fed atherogenic diets with normal vitamin D content (1.5IU/kg) or without vitamin D. Paricalcitol, or matched vehicle, was administered 3× weekly by intraperitoneal injection. Following 20 weeks of these interventions cardiovascular phenotype was characterized by histological assessment of aortic sinus atheroma, soluble markers, blood pressure and echocardiography. To place the cardiovascular assessments in the context of intervention effects on bone, structural changes at the tibia were assessed by microtomography. Results: Vitamin D deficient diet induced significant reductions in plasma vitamin D (p<0.001), trabecular bone volume (p<0.01) and bone mineral density (p<0.005). These changes were accompanied by an increase in calcification density (number of calcifications per mm2) of von Kossa-stained aortic sinus atheroma (461 versus 200, p<0.01). Paricalcitol administration suppressed parathyroid hormone (p<0.001), elevated plasma calcium phosphate product (p<0.005) and induced an increase in calcification density (472 versus 200, p<0.005) similar to that seen with vitamin D deficiency. Atheroma burden, blood pressure, metabolic profile and measures of left ventricular hypertrophy were unaffected by the interventions. Conclusion: Vitamin D deficiency, as well as excess, increases atherosclerotic calcification. This phenotype is induced before other measures of cardiovascular pathology associated clinically with vitamin D deficiency. Thus, maintenance of an optimal range of vitamin D signalling may be important for prevention of atherosclerotic calcification

    High serum phosphate and triglyceride levels in smoking women and men with CVD risk and type 2 diabetes

    Get PDF
    Background: Both low and high serum phosphate levels may be associated with morbidity and mortality from cardiovascular disease. As smoking increases risk for type 2 diabetes (as shown by dyslipidemia and hyperglycemia), we wanted to study whether smoking and type 2 diabetes were associated with serum phosphate and triglyceride levels independently from other CVD risk factors. Methods: Upon admittance to the Vindeln Health Education Centre (VHE-centre) for a four-week comprehensive lifestyle intervention, the participants (1408 women and 1096 men) completed a questionnaire that included their smoking habits - current smoker or non-smoker. We used multiple linear regression analyses to investigate the association between smoking and other CVD risk factors with S-P and S-TG levels. Results: In the non-type 2 diabetes populations, the smokers, compared to the non-smokers, had higher S-P and higher serum triglycerides (S-TG). In women, serum-TG in smokers with type 2 diabetes was higher than in smokers with non-type 2 diabetes. Non-type 2 diabetes patients exhibited an inverse relation between S-Glucose (S-Glu) and S-P and a positive association with S-TG. For men only, an association was seen between age (-) and S-Crea (-) and S-P. For women only, an association was seen between BMI (-) and S-Cholesterol (+) (S-Chol) and S-P. Conclusions: Compared to non-smokers, smoking women with non-type 2 diabetes and smoking men with type 2 diabetes had a higher level of S-P and S-TG. The association between smoking and S-P and S-TG levels still existed after adjusting for age and CVD risk factors in the multiple linear regression analyses
    corecore