975 research outputs found

    Age-Related Differences in Susceptibility to Carcinogenesis: A Quantitative Analysis of Empirical Animal Bioassay Data

    Get PDF
    In revising cancer risk assessment guidelines, the U.S. Environmental Protection Agency (EPA) analyzed animal cancer bioassay data over different periods of life. In this article, we report an improved analysis of these data (supplemented with some chemical carcinogenesis observations not included in the U.S. EPA’s original analysis) and animal bioassay studies of ionizing radiation. We use likelihood methods to avoid excluding cases where no tumors were observed in specific groups. We express dosage for animals of different weights on a metabolically consistent basis (concentration in air or food, or per unit body weight to the three-quarters power). Finally, we use a system of dummy variables to represent exposures during fetal, preweaning, and weaning–60-day postnatal periods, yielding separate estimates of relative sensitivity per day of dosing in these intervals. Central estimate results indicate a 5- to 60-fold increased carcinogenic sensitivity in the birth–weaning period per dose ÷ (body weight(0.75)-day) for mutagenic carcinogens and a somewhat smaller increase—centered about 5-fold—for radiation carcinogenesis per gray. Effects were greater in males than in females. We found a similar increased sensitivity in the fetal period for direct-acting nitrosoureas, but no such increased fetal sensitivity was detected for carcinogens requiring metabolic activation. For the birth–weaning period, we found an increased sensitivity for direct administration to the pups similar to that found for indirect exposure via lactation. Radiation experiments indicated that carcinogenic sensitivity is not constant through the “adult” period, but the dosage delivered in 12- to 21-month-old animals appears a few-fold less effective than the comparable dosage delivered in young adults (90–105 days of age)

    XM02 is superior to placebo and equivalent to Neupogen™ in reducing the duration of severe neutropenia and the incidence of febrile neutropenia in cycle 1 in breast cancer patients receiving docetaxel/doxorubicin chemotherapy

    Get PDF
    Abstract Background Recombinant granulocyte colony-stimulating factors (G-CSFs) such as Filgrastim are used to treat chemotherapy-induced neutropenia. We investigated a new G-CSF, XM02, and compared it to Neupogen™ after myelotoxic chemotherapy in breast cancer (BC) patients. Methods A total of 348 patients with BC receiving docetaxel/doxorubicin chemotherapy were randomised to treatment with daily injections (subcutaneous 5 μg/kg/day) for at least 5 days and a maximum of 14 days in each cycle of XM02 (n = 140), Neupogen™ (n = 136) or placebo (n = 72). The primary endpoint was the duration of severe neutropenia (DSN) in cycle 1. Results The mean DSN in cycle 1 was 1.1, 1.1, and 3.9 days in the XM02, Neupogen™, and placebo group, respectively. Superiority of XM02 over placebo and equivalence of XM02 with Neupogen™ could be demonstrated. Toxicities were similar between XM02 and Neupogen™. Conclusion XM02 was superior to placebo and equivalent to Neupogen™ in reducing DSN after myelotoxic chemotherapy. Trial Registration Current Controlled Trials ISRCTN02270769</p

    Sideband Cooling Micromechanical Motion to the Quantum Ground State

    Full text link
    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state, and generating new states of matter by achieving Bose-Einstein condensation of atomic vapors. Analogous cooling techniques provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity opto- or electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical interaction, which is achieved by embedding a micromechanical membrane into a superconducting microwave resonant circuit. In order to verify the cooling of the membrane motion into the quantum regime, we perform a near quantum-limited measurement of the microwave field, resolving this motion a factor of 5.1 from the Heisenberg limit. Furthermore, our device exhibits strong-coupling allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass.Comment: 13 pages, 7 figure

    Normal levels of p27Xic1 are necessary for somite segmentation and determining pronephric organ size

    Get PDF
    The Xenopus laevis cyclin dependent kinase inhibitor p27Xic1 has been shown to be involved in exit from the cell cycle and differentiation of cells into a quiescent state in the nervous system, muscle tissue, heart and retina. We show that p27Xic1 is expressed in the developing kidney in the nephrostomal regions. Using over-expression and morpholino oligonucleotide (MO) knock-down approaches we show normal levels of p27Xic1 regulate pronephros organ size by regulating cell cycle exit. Knock-down of p27Xic1 expression using a MO prevented myogenesis, as previously reported; an effect that subsequently inhibits pronephrogenesis. Furthermore, we show that normal levels of p27Xic1 are required for somite segmentation also through its cell cycle control function. Finally, we provide evidence to suggest correct paraxial mesoderm segmentation is not necessary for pronephric induction in the intermediate mesoderm. These results indicate novel developmental roles for p27Xic1, and reveal its differentiation function is not universally utilised in all developing tissues

    Localisation of RNAs into the germ plasm of vitellogenic xenopus oocytes

    Get PDF
    We have studied the localisation of mRNAs in full-grown Xenopus laevis oocytes by injecting fluorescent RNAs, followed by confocal microscopy of the oocyte cortex. Concentrating on RNA encoding the Xenopus Nanos homologue, nanos1 (formerly Xcat2), we find that it consistently localised into aggregated germ plasm ribonucleoprotein (RNP) particles, independently of cytoskeletal integrity. This implies that a diffusion/entrapment-mediated mechanism is active, as previously reported for previtellogenic oocytes. Sometimes this was accompanied by localisation into scattered particles of the “late”, Vg1/VegT pathway; occasionally only late pathway localisation was seen. The Xpat RNA behaved in an identical fashion and for neither RNA was the localisation changed by any culture conditions tested. The identity of the labelled RNP aggregates as definitive germ plasm was confirmed by their inclusion of abundant mitochondria and co-localisation with the germ plasm protein Hermes. Further, the nanos1/Hermes RNP particles are interspersed with those containing the germ plasm protein Xpat. These aggregates may be followed into the germ plasm of unfertilized eggs, but with a notable reduction in its quantity, both in terms of injected molecules and endogenous structures. Our results conflict with previous reports that there is no RNA localisation in large oocytes, and that during mid-oogenesis even germ plasm RNAs localise exclusively by the late pathway. We find that in mid oogenesis nanos1 RNA also localises to germ plasm but also by the late pathway. Late pathway RNAs, Vg1 and VegT, also may localise into germ plasm. Our results support the view that mechanistically the two modes of localisation are extremely similar, and that in an injection experiment RNAs might utilise either pathway, the distinction in fates being very subtle and subject to variation. We discuss these results in relation to their biological significance and the results of others

    The economics of Theocracy

    Get PDF
    This paper models theocracy as a regime where the clergy in power retains knowledge of the cost of political production but which is potentially incompetent or corrupt. This is contrasted with a secular regime where government is contracted out to a secular ruler, and hence the church loses the possibility to observe costs and creates for itself a hidden-information agency problem. The church is free to choose between regimes – a make-or-buy choice – and we look for the range of environmental parameters that are most conducive to the superiority of theocracy and therefore to its occurrence and persistence, despite its disabilities. Numerical solution of the model indicates that the optimal environment for a theocracy is likely to be one in which the “bad” (high-cost) state is disastrously bad but the probability of its occurrence is not very high. A broad review of the historical evidence yields some suggestive support to the predictions of the model. Finally, the model is shown to be applicable to the make-or-buy-government choices of other groups, such as organized labor and the military

    Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders

    Get PDF
    Personality is influenced by genetic and environmental factors1 and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132–260,861). Of these genomewide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit– hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion–introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety)

    Electrical, morphological and structural properties of RF magnetron sputtered Mo thin films for application in thin film photovoltaic solar cells

    Get PDF
    Molybdenum (Mo) thin films were deposited using radio frequency magnetron sputtering, for application as a metal back contact material in ‘‘substrate configuration’’ thin film solar cells. The variations of the electrical, morphological, and structural properties of the deposited films with sputtering pressure, sputtering power and post-deposition annealing were determined. The electrical conductivity of the Mo films was found to increase with decreasing sputtering pressure and increasing sputtering power. X-ray diffraction data showed that all the films had a (110) preferred orientation that became less pronounced at higher sputtering power while being relatively insensitive to process pressure. The lattice stress within the films changed from tensile to compressive with increasing sputtering power and the tensile stress increased with increasing sputtering pressure. The surface morphology of the films changed from pyramids to cigar-shaped grains for a sputtering power between 100 and 200 W, remaining largely unchanged at higher power. These grains were also observed to decrease in size with increasing sputtering pressure. Annealing the films was found to affect the resistivity and stress of the films. The resistivity increased due to the presence of residual oxygen and the stress changed from tensile to compressive. The annealing step was not found to affect the crystallisation and grain growth of the Mo films
    corecore