12 research outputs found

    Cambogin Is Preferentially Cytotoxic to Cells Expressing PDGFR

    Get PDF
    Platelet-derived growth factor receptors (PDGFRs) have been implicated in a wide array of human malignancies, including medulloblastoma (MB), the most common brain tumor of childhood. Although significant progress in MB biology and therapeutics has been achieved during the past decades, MB remains a horrible challenge to the physicians and researchers. Therefore, novel inhibitors targeting PDGFR signaling pathway may offer great promise for the treatment of MB. In the present study, we investigated the cytotoxicity and mechanisms of cambogin in Daoy MB cells. Our results show that cambogin triggers significant S phase cell cycle arrest and apoptosis via down regulation of cyclin A and E, and activation of caspases. More importantly, further mechanistic studies demonstrated that cambogin inhibits PDGFR signaling in Daoy and genetically defined mouse embryo fibroblast (MEF) cell lines. These results suggest that cambogin is preferentially cytotoxic to cells expressing PDGFR. Our findings may provide a novel approach by targeting PDGFR signaling against MB

    Gleevec, an Abl family inhibitor, produces a profound change in cell shape and migration (in press)

    Get PDF
    The issue of how contractility and adhesion are related to cell shape and migration pattern remains largely unresolved. In this paper we report that Gleevec (Imatinib), an Abl family kinase inhibitor, produces a profound change in the shape and migration of rat bladder tumor cells (NBTII) plated on collagen-coated substrates. Cells treated with Gleevec adopt a highly spread D-shape and migrate more rapidly with greater persistence. Accompanying this more spread state is an increase in integrin-mediated adhesion coupled with increases in the size and number of discrete adhesions. In addition, both total internal reflection fluorescence microscopy (TIRFM) and interference reflection microscopy (IRM) revealed a band of small punctate adhesions with rapid turnover near the cell leading margin. These changes led to an increase in global cell-substrate adhesion strength, as assessed by laminar flow experiments. Gleevec-treated cells have greater RhoA activity which, via myosin activation, led to an increase in the magnitude of total traction force applied to the substrate. These chemical and physical alterations upon Gleevec treatment produce the dramatic change in morphology and migration that is observed

    Angiogenesis and Angiogenic Tyrosine Kinase Receptor Expression in Pediatric Brain Tumors

    No full text
    Tumor angiogenesis and receptor tyrosine kinases (RTK) are major novel targets in anticancer molecular therapy. Accordingly, we characterized the vascular network and the expression pattern of angiogenic RTK in the most frequent pediatric brain tumors. In a retrospective collection of 44 cases (14 astrocytoma, 16 ependymoma and 14 medulloblastoma), immunohistochemistry for VEGFR1, VEGFR2, PDGFRα, PDGFRβ, and c-Kit as well as microvessel labeling with CD34 and SMA were conducted on surgical specimens. We found a significantly higher vascular density in ependymoma. Glomeruloid formations were abundant in medulloblastoma but rare or almost absent in astrocytoma and ependymoma, respectively. C-Kit and VEGFR2 labeled blood vessels were more abundant in ependymoma than in the other two types of tumors. In contrast, medulloblastoma contained higher number of PDGFRα expressing vessels. In tumor cells, we found no VEGFR2 but VEGFR1 expression in all three tumor types. PDGFRα was strongly expressed on the tumor cells in all three malignancies, while PDGFRβ tumor cell expression was present in the majority of medulloblastoma cases. Interestingly, small populations of c-Kit expressing cancer cells were found in a number of medulloblastoma and ependymoma cases. Our study suggests that different angiogenic mechanisms are present in ependymoma and medulloblastoma. Furthermore ependymoma patients may benefit from anti-angiogenic therapies based on the high vascularization as well as the endothelial expression of c-kit and VEGFR2. The expression pattern of the receptors on tumor cells also suggests the targeting of specific angiogenic tyrosine kinase receptors may have direct antitumor activity. Further preclinical and biomarker driven clinical investigations are needed to establish the application of tyrosine kinase inhibitors in the treatment of pediatric brain tumors

    E7080, a multi-targeted tyrosine kinase inhibitor suppresses tumor cell migration and invasion

    Get PDF
    Background: E7080 is an orally active multi-targeted kinase inhibitor whose targets include vascular endothelial growth factor receptors (VEGFR), fibroblast growth factor receptor (FGFR) and platelet derived growth factor receptors (PDGFR). It has been shown to inhibit tumor angiogenesis by targeting endothelial cells. A number of the targets of E7080 are also expressed on tumor cells and here we have looked at the direct effects of E7080 on tumor cell behavior. Methods: Using a panel of human tumor cell lines we determined the effect of E7080 on cell proliferation, migration and invasion. Inhibition of FGFR and PDGFR signaling in the cells was measured. Results: E7080 had little effect on tumor cell proliferation. However, it blocked migration and invasion at concentrations that inhibited FGFR and PDGFR signaling. Knock-down of PDGFR-beta in U2OS osteosarcoma cells also inhibited cell migration which, could not be further inhibited in the presence of E7080. Furthermore, E7080 could not inhibit the migration of a PDGFR negative cell line. Conclusion: E7080 does not significantly affect tumor cell proliferation but can inhibit their migration and invasion at concentrations that both inhibit its known targets and are achievable clinically

    Subgroup-specific alternative splicing in medulloblastoma

    No full text
    Medulloblastoma is comprised of four distinct molecular variants: WNT, SHH, Group 3, and Group 4. We analyzed alternative splicing usage in 14 normal cerebellar samples and 103 medulloblastomas of known subgroup. Medulloblastoma samples have a statistically significant increase in alternative splicing as compared to normal fetal cerebella (2.3-times; P<6.47E-8). Splicing patterns are distinct and specific between molecular subgroups. Unsupervised hierarchical clustering of alternative splicing events accurately assigns medulloblastomas to their correct subgroup. Subgroup-specific splicing and alternative promoter usage was most prevalent in Group 3 (19.4%) and SHH (16.2%) medulloblastomas, while observed less frequently in WNT (3.2%), and Group 4 (9.3%) tumors. Functional annotation of alternatively spliced genes reveals over-representation of genes important for neuronal development. Alternative splicing events in medulloblastoma may be regulated in part by the correlative expression of antisense transcripts, suggesting a possible mechanism affecting subgroup specific alternative splicing. Our results identify additional candidate markers for medulloblastoma subgroup affiliation, further support the existence of distinct subgroups of the disease, and demonstrate an additional level of transcriptional heterogeneity between medulloblastoma subgroups
    corecore