15 research outputs found

    Dissection of synaptic pathways through the CSF biomarkers for predicting Alzheimer's disease

    Get PDF
    OBJECTIVE: To assess the ability of a combination of synaptic CSF biomarkers to separate AD and non-AD disorders and to help in the differential diagnosis between neurocognitive diseases. METHODS: Retrospective cross-sectional monocentric study. All participants explored with CSF assessments for neurocognitive decline were invited to participate. After complete clinical and imaging evaluations, 243 patients were included. CSF synaptic (GAP-43, neurogranin, SNAP-25 total, SNAP-25 aa40, synaptotagmin-1) and AD biomarkers were blindly quantified using ELISA or mass spectrometry. Statistical analysis compared CSF levels between various groups AD dementias n=81, MCI-AD n=30, other MCI n=49, other dementias (OD) n=49, neurological controls n=35) as well as their discriminatory powers. RESULTS: All synaptic biomarkers were significantly increased in MCI-AD and AD -dementias patients compared to other groups. All synaptic biomarkers could efficiently discriminate AD dementias from OD (AUC ≥0.80). All but synaptotagmin were also able to discriminate MCI-AD from controls (AUC ≥0.85) and AD dementias from controls (AUC ≥0.80). Overall, CSF SNAP 25aa40 had the highest discriminative power (AUC=0.93) between AD dementias and controls or OD, and AUC=0.90 between MCI-AD and controls. Higher levels were associated with two alleles of apolipoprotein E (APOE) ε4. CONCLUSION: All synaptic biomarkers tested had a good discriminatory power to distinguish patients with AD abnormal CSF from non-AD disorders. SNAP25aa40 demonstrated the highest power to discriminate AD CSF positive patients from non-AD patients and neurological controls in this cohort. CLASSIFICATION OF EVIDENCE: This retrospective study provides Class II evidence that CSF synaptic biomarkers discriminate patients with AD from non-AD patients

    Neuroinflammation and Aβ accumulation linked to systemic inflammation are decreased by genetic PKR down-regulation

    No full text
    Alzheimer's disease (AD) is a neurodegenerative disorder, marked by senile plaques composed of amyloid-β (Aβ) peptide, neurofibrillary tangles, neuronal loss and neuroinflammation. Previous works have suggested that systemic inflammation could contribute to neuroinflammation and enhanced Aβ cerebral concentrations. The molecular pathways leading to these events are not fully understood. PKR is a pro-apoptotic kinase that can trigger inflammation and accumulates in the brain and cerebrospinal fluid of AD patients. The goal of the present study was to assess if LPS-induced neuroinflammation and Aβ production could be altered by genetic PKR down regulation. The results show that, in the hippocampus of LPS-injected wild type mice, neuroinflammation, cytokine release and Aβ production are significantly increased and not in LPS-treated PKR knock-out mice. In addition BACE1 and activated STAT3 levels, a putative transcriptional regulator of BACE1, were not found increased in the brain of PKR knock-out mice as observed in wild type mice. Using PET imaging, the decrease of hippocampal metabolism induced by systemic LPS was not observed in LPS-treated PKR knock-out mice. Altogether, these findings demonstrate that PKR plays a major role in brain changes induced by LPS and could be a valid target to modulate neuroinflammation and Aβ production
    corecore