52 research outputs found

    Epirubicin. A new entry in the list of fetal cardiotoxic drugs? Intrauterine death of one fetus in a twin pregnancy. Case report and review of literature

    Get PDF
    BACKGROUND: Current knowledge indicate that epirubicin administration in late pregnancy is almost devoid of any fetal cardiotoxicity. We report a twin pregnancy complicated by breast cancer in which epirubicin administration was causatively linked to the death of one twin who was small for gestational age (SGA) and in a condition of oligohydramnios and determined the onset of a transient cardiotoxicity of the surviving fetus/newborn. CASE PRESENTATION: A 38-year-old caucasic woman with a dichorionic twin pregnancy was referred to our center at 20 and 1/7 weeks for a suspected breast cancer, later confirmed by the histopathology report. At 31 and 3/7 weeks, after the second chemotherapy cycle, ultrasound examination evidenced the demise of one twin while cardiac examination revealed a monophasic diastolic ventricular filling, i.e. a diastolic dysfunction of the surviving fetus who was delivered the following day due to the occurrence of grade II placental abruption. The role of epirubicin cardiotoxicity in the death of the first twin was supported by post-mortem cardiac and placental examination and by the absence of structural or genomic abnormalities that may indicate an alternative etiology of fetal demise. The occurrence of epirubicin cardiotoxicity in the surviving newborn was confirmed by the report of high levels of troponin and transient left ventricular septal hypokinesia. CONCLUSION: Based on our findings we suggest that epirubicin administration in pregnancy should be preceded by the screening of some fetal conditions like SGA and oligohydramnios that may increase its cardiotoxicity and that, during treatment, the diastolic function of the fetal right ventricle should be specifically monitored by a pediatric cardiologist; also, epirubicin and desamethasone for lung maturation should not be closely administered since placental effects of glucocorticoids may increase epirubicin toxicity

    Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense

    Get PDF
    Highly purified rat liver mitochondria (RLM) when exposed to tert-butylhydroperoxide undergo matrix swelling, membrane potential collapse, and oxidation of glutathione and pyridine nucleotides, all events attributable to the induction of mitochondrial permeability transition. Instead, RLM, if treated with the same or higher amounts of H2O2 or tyramine, are insensitive or only partially sensitive, respectively, to mitochondrial permeability transition. In addition, the block of respiration by antimycin A added to RLM respiring in state 4 conditions, or the addition of H2O2, results in O2 generation, which is blocked by the catalase inhibitors aminotriazole or KCN. In this regard, H2O2 decomposition yields molecular oxygen in a 2:1 stoichiometry, consistent with a catalytic mechanism with a rate constant of 0.0346 s(-1). The rate of H2O2 consumption is not influenced by respiratory substrates, succinate or glutamate-malate, nor by N-ethylmaleimide, suggesting that cytochrome c oxidase and the glutathione-glutathione peroxidase system are not significantly involved in this process. Instead, H2O2 consumption is considerably inhibited by KCN or aminotriazole, indicating activity by a hemoprotein. All these observations are compatible with the presence of endogenous heme-containing catalase with an activity of 825 +/- 15 units, which contributes to mitochondrial protection against endogenous or exogenous H2O2. Mitochondrial catalase in liver most probably represents regulatory control of bioenergetic metabolism, but it may also be proposed for new therapeutic strategies against liver diseases. The constitutive presence of catalase inside mitochondria is demonstrated by several methodological approaches as follows: biochemical fractionating, proteinase K sensitivity, and immunogold electron microscopy on isolated RLM and whole rat liver tissue

    In Chronic Lymphocytic Leukemia the JAK2/STAT3 Pathway Is Constitutively Activated and Its Inhibition Leads to CLL Cell Death Unaffected by the Protective Bone Marrow Microenvironment

    Get PDF
    The bone marrow microenvironment promotes proliferation and drug resistance in chronic lymphocytic leukemia (CLL). Although ibrutinib is active in CLL, it is rarely able to clear leukemic cells protected by bone marrow mesenchymal stromal cells (BMSCs) within the marrow niche. We investigated the modulation of JAK2/STAT3 pathway in CLL by BMSCs and its targeting with AG490 (JAK2 inhibitor) or Stattic (STAT3 inhibitor). B cells collected from controls and CLL patients, were treated with medium alone, ibrutinib, JAK/Signal Transducer and Activator of Transcription (STAT) inhibitors, or both drugs, in the presence of absence of BMSCs. JAK2/STAT3 axis was evaluated by western blotting, flow cytometry, and confocal microscopy. We demonstrated that STAT3 was phosphorylated in Tyr705 in the majority of CLL patients at basal condition, and increased following co-cultures with BMSCs or IL-6. Treatment with AG490, but not Stattic, caused STAT3 and Lyn dephosphorylation, through re-activation of SHP-1, and triggered CLL apoptosis even when leukemic cells were cultured on BMSC layers. Moreover, while BMSCs hamper ibrutinib activity, the combination of ibrutinib+JAK/STAT inhibitors increase ibrutinib-mediated leukemic cell death, bypassing the pro-survival stimuli derived from BMSCs. We herein provide evidence that JAK2/STAT3 signaling might play a key role in the regulation of CLL-BMSC interactions and its inhibition enhances ibrutinib, counteracting the bone marrow niche

    Targeted activation of the SHP-1/PP2A signaling axis elicits apoptosis of chronic lymphocytic leukemia cells

    Get PDF
    Lyn, a member of the Src family of kinases, is a key factor in the dys-regulation of survival and apoptotic pathways of malignant B cells in chronic lymphocytic leukemia. One of the effects of Lyn's action is spatial and functional segregation of the tyrosine phosphatase SHP-1 into two pools, one beneath the plasma membrane in an active state promoting pro-survival signals, the other in the cytosol in an inhibited conformation and unable to counter the elevated level of cytosolic tyrosine phosphorylation. We herein show that SHP-1 activity can be elicited directly by nintedanib, an agent also known as a triple angiokinase inhibitor, circumventing the phospho-S591-dependent inhibition of the phosphatase, leading to the dephosphorylation of pro-apoptotic players such as procaspase-8 and serine/threonine phosphatase 2A, eventually triggering apoptosis. Furthermore, the activation of PP2A by using MP07-66, a novel FTY720 analog, stimulated SHP-1 activity via dephosphorylation of phospho-S591, which unveiled the existence of a positive feedback signaling loop involving the two phosphatases. In addition to providing further insights into the molecular basis of this disease, our findings indicate that the PP2A/SHP-1 axis may emerge as an attractive, novel target for the development of alternative strategies in the treatment of chronic lymphocytic leukemia

    Lyn sustains oncogenic signaling in chronic lymphocytic leukemia by strengthening SET-mediated inhibition of PP2A.

    Get PDF
    Aberrant protein kinase activities, and the consequent dramatic increase of Ser/Thr and -Tyr phosphorylation, promote the deregulation of the survival pathways in chronic lymphocytic leukemia (CLL), which is crucial to the pathogenesis and progression of the disease. In this study, we show that the tumor suppressor Protein Phosphatase 2A (PP2A), one of the major Ser/Thr phosphatase, is in an inhibited form due to the synergistic contribution of two events, the interaction with its physiological inhibitor SET and the phosphorylation of Y307 of the catalytic subunit of PP2A. The latter event is mediated by Lyn, a Src family kinase previously found to be overexpressed, delocalized and constitutively active in CLL cells. This Lyn/PP2A axis accounts for the persistent high level of phosphorylation of the phosphatase's targets and represents a key connection linking phosphotyrosine- and phosphoserine/threonine-mediated oncogenic signals. The data herein presented show that the disruption of the SET/PP2A complex by a novel FTY720-analogue (MP07-66) devoid of immunosuppressive effects leads to the reactivation of PP2A, which in turn triggers apoptosis of CLL cells. When used in combination with SFK inhibitors, the action of MP07-66 is synergistically amplified, providing a new option in the therapeutic strategy for CLL patients

    Sensitivity and specificity of in vivo COVID-19 screening by detection dogs: Results of the C19-Screendog multicenter study

    Get PDF
    Trained dogs can recognize the volatile organic compounds contained in biological samples of patients with COVID-19 infection. We assessed the sensitivity and specificity of in vivo SARS-CoV- 2 screening by trained dogs. We recruited five dog-handler dyads. In the operant conditioning phase, the dogs were taught to distinguish between positive and negative sweat samples collected from volunteers’ underarms in polymeric tubes. The conditioning was validated by tests involving 16 positive and 48 negative samples held or worn in such a way that the samples were invisible to the dog and handler. In the screening phase the dogs were led by their handlers to a drive-through facility for in vivo screening of volunteers who had just received a nasopharyngeal swab from nursing staff. Each volunteer who had already swabbed was subsequently tested by two dogs, whose responses were recorded as positive, negative, or inconclusive. The dogs’ behavior was constantly monitored for attentiveness and wellbeing. All the dogs passed the conditioning phase, their responses showing a sensitivity of 83-100% and a specificity of 94-100%. The in vivo screening phase involved 1251 subjects, of whom 205 had a COVID-19 positive swab and two dogs per each subject to be screened. Screeningsensitivity and specificity were respectively 91.6-97.6% and 96.3-100% when only one dog was involved, whereas combined screening by two dogs provided a higher sensitivity. Dog wellbeing was also analysed: monitoring of stress and fatigue suggested that the screening activity did not adversely impact the dogs’ wellbeing. This work, by screening a large number of subjects, strengthen recent findings that trained dogs can discriminate between COVID-19 infected and healthy human subjects and introduce two novel research aspects: i) assessement of signs of fatigue and stress in dogs during training and testing, and ii) combining screening by two dogs to improve detection sensitivity and specificity. Using some precautions to reduce the risk of infection and spillover, in vivo COVID-19 screening by a dog-handler dyad can be suitable to quickly screen large numbers of people: it is rapid, non- invasiveand economical, since it does not involve actual sampling, lab resources or waste management, and is suitable to screen large numbers of people

    HS1, a Lyn Kinase Substrate, Is Abnormally Expressed in B-Chronic Lymphocytic Leukemia and Correlates with Response to Fludarabine-Based Regimen

    Get PDF
    In B-Chronic Lymphocytic Leukemia (B-CLL) kinase Lyn is overexpressed, active, abnormally distributed, and part of a cytosolic complex involving hematopoietic lineage cell-specific protein 1 (HS1). These aberrant properties of Lyn could partially explain leukemic cells’ defective apoptosis, directly or through its substrates, for example, HS1 that has been associated to apoptosis in different cell types. To verify the hypothesis of HS1 involvement in Lyn-mediated leukemic cell survival, we investigated HS1 protein in 71 untreated B-CLL patients and 26 healthy controls. We found HS1 overexpressed in leukemic as compared to normal B lymphocytes (1.38±0.54 vs 0.86±0.29, p<0.01), and when HS1 levels were correlated to clinical parameters we found a higher expression of HS1 in poor-prognosis patients. Moreover, HS1 levels significantly decreased in ex vivo leukemic cells of patients responding to a fludarabine-containing regimen. We also observed that HS1 is partially localized in the nucleus of neoplastic B cells. All these data add new information on HS1 study, hypothesizing a pivotal role of HS1 in Lyn-mediated modulation of leukemic cells’ survival and focusing, one more time, the attention on the BCR-Lyn axis as a putative target for new therapeutic strategies in this disorder

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF
    • …
    corecore