78 research outputs found

    A hysteretic multiscale formulation for nonlinear dynamic analysis of composite materials

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.A new multiscale finite element formulation is presented for nonlinear dynamic analysis of heterogeneous structures. The proposed multiscale approach utilizes the hysteretic finite element method to model the microstructure. Using the proposed computational scheme, the micro-basis functions, that are used to map the microdisplacement components to the coarse mesh, are only evaluated once and remain constant throughout the analysis procedure. This is accomplished by treating inelasticity at the micro-elemental level through properly defined hysteretic evolution equations. Two types of imposed boundary conditions are considered for the derivation of the multiscale basis functions, namely the linear and periodic boundary conditions. The validity of the proposed formulation as well as its computational efficiency are verified through illustrative numerical experiments

    A multiscale virtual element method for the analysis of heterogeneous media

    Get PDF
    We introduce a novel heterogeneous multiscale method for the elastic analysis of two-dimensional domains with a complex microstructure. To this end, the multiscale finite element method is revisited and originally upgraded by introducing virtual element discretizations at the microscale, hence allowing for generalized polygonal and nonconvex elements. The microscale is upscaled through the numerical evaluation of a set of multiscale basis functions. The solution of the equilibrium equations is performed at the coarse scale at a reduced computational cost. We discuss the computation of the multiscale basis functions and corresponding virtual projection operators. The performance of the method in terms of accuracy and computational efficiency is evaluated through a set of numerical examples

    On the tolerable limits of granulated recycled material additives to maintain structural integrity

    Full text link
    © 2018 Elsevier Ltd Production and maker spaces are increasingly generating mixed plastic material waste of varying quality from 3-D printers. Industrial interest is growing in embedding granulated recycled particulate material additives into a virgin binding matrix. Examples include the introduction of granulated mixed recycled materials into 3-D printer material, concrete, and pavement. The stress load-sharing between the particulate additive and the binding matrix is an important factor in design and development of these composite materials. With mixed material additives, a designer is interested in the variation of such predicted load-sharing. However, experimental development is costly and time-consuming, thus analytical and semi-analytical estimates are desired for accelerated development. In this work, we expand on previous analytically correlated phase-averaged micro- and macrostructural loading to include variational effects present in mixed recycled material. In addition, model trade-offs are provided to aid designers in quickly selecting application specific mixtures. This framework identifies the stress contributions, and their variation, to reduce product development time and costs, which could greatly accelerate material recycling and reuse for improved infrastructure materials, low-cost 3-D printer filament, and reduced waste towards a more circular economy
    corecore