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We introduce a novel heterogeneousmultiscalemethod for
the elastic analysis of two-dimensional domainswith a com-
plex micro-structure. To this end, the multiscale finite el-
ement method is revisited and originally upgraded by in-
troducing virtual element discretizations at the micro-scale
hence allowing for generalised polygonal and non-convex
elements. The micro-scale is upscaled through the numer-
ical evaluation of a set of multiscale basis functions. The
solution of the equilibrium equations is performed at the
coarse-scale at a reduced computational cost. We discuss
the computation of the multiscale basis functions and cor-
responding virtual projection operators. The performance
of the method in terms of accuracy and computational effi-
ciency is evaluated through a set of numerical examples.
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1 | INTRODUCTION

Advances in automated manufacturing and in particular additive manufacturing have led to the wide-spread appli-
cation of components possessing complex and fit-for-purpose material layouts in the construction, aerospace and
automotive industries [1]. Additively manufactured functionally graded composites and foams can be tailored to in-
creased mechanical properties when compared to traditional layered composites or metals, e.g., higher strength to10

weight ratios and higher damping to weight ratios [2]. However, the corresponding manufacturing processes can be
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extensive, are prone to errors and necessitate several design iterations before a desirable layout is finally produced.
This motivates the development of computational methods that can lead to augmenting desirable mechanical traits
while reducing undesirable ones while still at the design stage.

Yet, the flexibility provided by manufacturing poses a series of challenges vis-a-vis the numerical simulation of15

structural components with exotic material layouts. The distribution of material heterogeneities at the micro- or
meso-scale significantly affects the overall mechanical response of the component. Hence, both from a physical
and a computational perspective, the problem of assessing the mechanical performance of a component becomes
a multiscale one. Numerical simulation of physics across multiple length scales can, in principle, be done with the
standard finite-element approach [3]. However, this would necessitate the use of extremely fine mesh discretizations20

to resolve the corresponding heterogeneities, hence leading to high computational costs [4].
Computational homogenisation techniques have been developed to efficiently address this issue [see, e.g. 5, 6, 7,

8]. These are based on the definition of a representative volume element (RVE) [9] that forms the basis for evaluating
the effective constitutive behaviour of a heterogeneous domain [10, 11]. The structural problem is then solved at a
macroscopic scale using standard discretization methods, e.g., finite elements. However, computational homogeni-25

sation methods rely on the assumptions of periodicity and scale separation which is often not the case in highly
heterogeneous domains. Increasing the size of the RVE [12, 13] to accommodate more information about the hetero-
geneities will lead to increased computational costs, effectively negating the advantages of upscaling.

Multiscale Finite Element Methods (MsFEM) [14] offer a very interesting alternative to account for such hetero-
geneous problems. MsFEM use the information about the morphology at the micro or meso-scopic scale to construct30

equivalent numerical problems subject to certain kinematical constraints. Solutions to these equivalent problems
yield multiscale basis functions, which are used to map mesoscale information to the macroscopic scale. These basis
functions are dependent on the geometry and material properties of the underlying constituents. An inherent draw-
back of this method, that prevents its application to structural engineering problems, is its inability to account for the
Poisson’s effect. The Enhanced Multiscale Finite Element Method (EMsFEM) [15] has been developed to overcome35

this problem by introducing additional coupling terms when computing the multiscale basis functions. However, the
EMsFEM can only treat quadrilateral meshes.

Accounting for complex morphologies of the heterogeneities encompassed by an RVE using traditional element
geometries like quadrilateral and triangular elements may necessitate quite fine mesoscopic mesh discretizations,
thus driving up the cost of computing multiscale basis functions. Optimization of the underlying mesh could thus40

prove critical to improving the performance of the method. Mesh optimization requires, as a pre-requisite, numerical
methods that allow for more flexible mesh generation capabilities.

Polygonal and polyhedral finite element methods (PFEM) [16, 17, 18, 19, 20, 21, 22, 23] are increasingly being
applied to several fields of computational mechanics and and are well suited in modelling complex microstructure
morphologies. To this point, these formulations have been applied to topology optimization [24, 25], computational45

fracture and damage modelling [26, 27, 28, 29], contact problems [30, 31] and fluid mechanics [32]. However, PFEM
are limited by the availability of suitable basis functions. The typically employed analyticalWachspress shape functions
are valid only over simple and convex polyhedra [33]. Hence, for the case of complex and in general non-convex
polygons and polyhedrons numerical approaches have to be employed that however increase the computational toll
of the method [34] as in the case of, e.g., numerically evaluated harmonic [17, 35] and maximum-entropy shape50

functions [36, 37, 38]. This issue is further augmented in non-linear problems [39, 40]. The virtual element method
(VEM) emerged as a versatile alternative for solving partial differential equations using flexible element geometries to
address the aforementioned issues [41, 42, 43, 44, 45, 46, 47].

The development of the VEM can chronologically be traced back to Finite Volume Methods [48, 49] and more
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recently the Mimetic Finite Difference method (MFD) [50, 51, 52, 53, 54, 55]. More specifically, the VEM emerged as55

a variational reformulation of the low-order MFD method [52] and its higher-order generalization [56]. MFDs, when
extended to Finite Element Methods (FEM), were able to model traditional trial/test function spaces over generalised
element geometries without having explicit representations for these basis functions inside the element interior. The
aforementioned approaches aim to improve the accuracy of the standard FEM, when applied to polyhedral meshes,
by enriching the space of trial functions with possibly non-polynomial expressions. Contrary to the MFD, the VEM60

attempts to preserve the polynomial accuracy over simplexes [41]. This allows the use of complex polyhedral and
non-convex element shapes with more general continuity requirements such as H(div) conformity [57].

In this work, we derive a novel heterogeneous multiscale method, termed the Enhanced Multiscale Virtual Ele-
ment method (EMsVEM) for the analysis of highly heterogeneous domains across multiple length scales. To achieve
this, we employ the VEM to resolve heterogeneities at the fine-scale and derive appropriate multiscale basis functions65

to project the VEM onto a coarse finite element mesh. The solution of the governing equations is then performed at
the coarse mesh at a significantly reduced computational cost. We proceed to examine and discuss the advantages
and drawbacks that arise from employing virtual elements at the fine-scale in terms of accuracy and computational
efficiency.

The remainder of the manuscript is organized as follows: in Section 2, the formulation of the VEM for linear70

elasticity is discussed. The derivations pertaining to the EMsVEM are provided in Section 3. The method is validated
against the standard FEM and analytical solutions in Section 4 and the merits and bottlenecks of the EMsVEM are
discussed. Concluding remarks are provided in Section 5.

2 | PRELIMINARIES

2.1 | Problem Statement75

F IGURE 1 Schematic representation of a two dimensional domain Ω with boundary ∂Ω. (a) Essential and natural
boundaries ū and t̄ are prescribed on Γu and Γt respectively. (b) The discretized domain Th is decomposed into
polygonal elements.

The case of a domain Ω ⊂ Ò2 is considered herein, subjected to plane stress or plane strain conditions. The
domain is subjected to a body force b, and is prescribed a displacement and traction ū and t̄ over the boundaries Γu
and Γt respectively. The displacement and traction boundaries are defined to be non-intersecting, i.e., Γu∩Γt = ∅. The
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corresponding equilibrium, constitutive, and compatibility equations are defined in Eqs. (1a), (1b), and (1c), respectively
as:80

div(σ) + b = 0 in Ω (1a)

σ = Ãε (1b)

ε =
1

2
(+u + (+u)T ) = +S (u) ≡ ε(u), (1c)

subject to generalized inhomogeneous displacement and traction boundaries defined as follows:

u = ū on Γu (2a)

σ · n = t̄ on Γt . (2b)

Here, Ã is the material constitutive tensor, σ is the stress tensor, and ε is the infinitesimal strain tensor. The displace-
ment field u is being solved for. The symbols, +, +S and div(·) denote the gradient, symmetric gradient and divergence
operators, respectively.

Eqs. (1) are recast into their corresponding weak form considering the following function spaces

V0 = {w ∈ [H1(Ω)]2 | w = 0 on Γu } (3a)

V = {w ∈ [H1(Ω)]2 | w = ū on Γu }, (3b)

where [H1(Ω)]2 represent the standard Hilbert function space of dimension 2. Defining an appropriate weighting
function v ∈ V0, the weak formulation of the governing equations defined in Eqs. (1a), (1b) and (1c) is expressed in85

the following compact form


Find u ∈ V such that

a(u, v) = F(v) [ v ∈ V0,
(4)

where a(·, ·) and F(·) are bilinear and linear functionals, respectively defined as

a(u, v) =
∫
Ω
ε(u)Ã ε(v)dΩ (5a)

F(v) =
∫
Γt
t̄ vdΓ −

∫
Ω
b vdΩ. (5b)

In this work, the virtual element approach is employed to discretize Eqs. (5).

2.2 | Virtual Element discretization

The aim of the Virtual ElementMethod is to generalize the standard finite element domain decomposition to polygonal
(or polyhedral in 3D) elements with any number of edges (not restricted to merely quadrilateral, triangular, hexahedral90

or tetrahedral meshes). This includes also the case of non-convex elements. Let Ω be decomposed as shown in
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Fig. 1b into nel non-overlapping two dimensional polygonal elements contained in a set Th1. The corner vertices of
each element Ki for i = 1 . . . nel are represented by νij for j = 1, 2, . . .Ni

v where Ni
v denotes the number of corner

vertices. The edges are denoted by eij for j = 1, 2, . . .Ni
e where Ni

e=Ni
v is the total number of edges. Each edge eij

connects vertices νij and ν
i
j+1. For a k

th order VEM, the edge eij is assumed to contain k − 1 internal edge-points. The95

case of a second order polygonal element is shown in Fig. 2. In the following, Ki will be written as K for brevity.

F IGURE 2 Conventions adopted for computing barycentric coordinates over a polygonal element, The element
index i is omitted here for simplicity of presentation

Similar to the standard FEM, the approximations uh and vh to the actual displacement and weighting field, respec-
tively, are defined as

uh ∈ Vh ⊂ V (6)

vh ∈ Vh0 ⊂ V0 (7)

where Vh and Vh0 are termed "virtual spaces".
Hence, Eq. (4) can be established in the following discretized form


Find uh ∈ Vh such that

a(uh, vh) = F(vh) [ vh ∈ Vh0,
(8)

where the bilinear forms a (·, ·) and F (·) in Eq. (8) are evaluated from the piece-wise element bilinear operators aK (·, ·)
and FK (·), respectively as

a(uh, vh) =
∑
K∈Th

aK (uh, vh), [ (uh, vh) ∈ VKh × V
K
h0 ⊂ Vh × Vh0, (9a)

F(vh) =
∑
K∈Th

FK (vh), [ vh ∈ VKh0 ⊂ Vh0 . (9b)

The global virtual spacesVh andVh0 and local element virtual spacesVKh andVKh0 are part of standard virtual element
literature [see, e.g., 58]. Explicit definitions are provided in Appendix A for the sake of completeness.100

Remark 1 The spaces employed within the VEM are examples of generalized finite element spaces that allow the trial and

1The parameter h is interpreted as the maximum diameter of all elements contained in Th .
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F IGURE 3 Degrees of freedom for three polynomial orders

test fields to assume non-polynomial forms over an element. This is seen as a weaker construction of the more conventional
finite element space where the field variables are restricted to only members of a polynomial space.

The displacement approximation, i..e, uh is implicitly interpolated at the virtual element degrees of freedom (DoFs)
that include105

1. 2Nv values at the vertices of K , j = 1, 2, ...Nv

2. 2Nv(k − 1) at the k − 1 internal boundary points on each edge of K , j = 1, ..., k − 1 for each edge

3. 2 k(k−1)2 second moments of uh defined on the element domain interior.

The values of the degrees of freedom are denoted via the operator dof (·) that assumes the following expression

dof (uh) =


uh(νj) for j = 1, 2, ...Ni

v

uh(νe
j ) for j = 1, 2, ...Ni

e
1
|K |

∫
K

uh · p dK [p ∈ [Ík−2(K)]
2 element domain interior

, (10)

where [Ík−2(K)]
2 denotes a space of k− 2 order vector monomials of dimension 2. The weighting function vh is also110

interpolated at the same DoFs.

Explicit definitions for these vector monomial spaces are provided in Appendix B for the sake of completeness.
The DoFs of the space have been illustrated over an arbitrary polygonal element for k = 1, 2, 3 in Fig. 3. Hence, for the
case of a two-dimensional domain where the displacements assume two DoFs per node, the dimension of the virtual
element space is115

n = 2Nv + 2Nv(k − 1) + 2
k(k − 1)

2
= 2Nvk + k(k − 1) (11)

Since the VEM functions do not have an explicit expression over the domain, essential operations like+(·) and con-
sequently ε(·) (Eq. (1c)) cannot directly be performed. Conversely, a strain specific projection operator Πεk : VKh (K) →
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[Ðk(K)]
2 is defined according to the following optimality criterion

aK (uh − Πεk uh, p) = 0, [p ∈ [Ðk(K)]2, (12)

where [Ðk(K)]2 is a space of k th order two-dimensional vector polynomials. This criterion ensures that the error arising
from the polynomial approximation is energetically orthogonal to the approximating subspace [Ðk(K)]2. It follows that120

the strain energy is computed exactly, despite the simplifying assumption introduced by the projection. In VEM
literature, this property is called k-consistency.

Remark 2 Introducing the strain specific Πεk projection onto a polynomial space is a deviation from the classical Galerkin
framework. Approximating a non-polynomial function using a polynomial basis falls into a class of "variational crimes"
[41] and introduces additional error into the formulation. This error is a result of performing numerical integration for non-125

polynomial functions using polynomial quadrature rules. However, one can derive a-priori bounds and estimators to quantify
and control this error [see, e.g., 59].

The approximating subspace [Ðk(K)]2 is spanned by vector monomials belonging to [Ík(K)]
2. However, these

monomials also contain zero deformation modes, i.e., rigid body modes that contribute zero strain energy to the
formulation described in Eq. (12). To avoid spurious results arising from ill-conditioned or singular matrices, such130

modes are excluded when computing Πεk . Instead, they are treated in a stability term. This is discussed in Section 3.2.
Following this reasoning, Eq. (12) is eventually established in the following form

aK (uh − Πεk uh,mj) = 0, [mj ∈ [Ík(K)]
2 \ Ëε (K), (13)

whereËε (K) belongs to the kernel of rigid bodymotions and [Ík(K)]
2\Ëε (K) is the kernel of the strain operator ε(·).

The contents of these sets can be determined using the additive kinematic decomposition rules mentioned in [60].
The monomial spaces used for the VEM formulation are provided in Appendix B for the sake of completeness. The135

exact procedure followed for computing Πεk and the associated local stiffness matrix aK (uh, vh) is discussed within a
multiscale context in Section 3.2.

3 | ENHANCED MULTISCALE VIRTUAL ELEMENT METHOD

3.1 | Overview

To this point, the EMsFEM has been developed to treat regular heterogeneous domains as shown in Fig. 4a, where140

each rectangular coarse element clusters its own representative portion of the underlying fine mesh. The fine mesh
is designed to resolve all mesoscale heterogeneities. These are upscaled to the coarse level, where the solution is
obtained at reduced computational cost. In this work, we treat the most general case of complex geometrical domains
at the micro structure as shown in Fig. 4b.

To achieve this, we employ the virtual element method to accurately and efficiently resolve the heterogeneities145

at the fine scale. Similar to the EMsFEM, the heterogeneous domain is coarsely discretized into KM(α), α = 1 . . . nMel ,
coarse elements, where nMel is the number of coarse elements. Each coarse element clusters its own set of Km(i), i =
1 . . . nmel micro-elements where nmel is the number of micro-elements in the KM(α).

For each type of coarse element, a set of multiscale basis functions is evaluated using the standard VEM. These
basis functions are then employed to map the fine scale onto the coarse scale where the solution of the governing150
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(a) (b)

F IGURE 4 Multiscale mesh with (a) 9 coarse quadrilateral elements and 81 quadrilateral fine-elements and (b) 9
coarse quadrilateral elements and 81 polygonal (possibly non-convex) fine-elements

equations is performed. The EMsVEM procedure is schematically depicted in Fig. 5.

The multiscale basis functions required for the upscaling procedure are evaluated through the solution of a ho-
mogeneous version of Eq. (8) over the α t h coarse element domain KM(α), i.e.,


Find uh ∈ Vh(KM(α)) such that

a(uh, vh) = 0 [ vh ∈ Vh0(KM(α)).
(14)

These homogeneous equations are subjected to kinematical constraints that account for heterogeneities and
the deformability of the boundary. They are imposed over the RVE in the form of linear or periodic boundaries.155

The procedure for such enforcements are discussed in [2] and will not be detailed here. The choice of the coarse
element boundary conditions plays an important role vis-a-vis the accuracy of the method. Resonance errors may
occurwhen the coarse-element length scale approaches the fine-element scale, i.e., a large number of coarse elements
are employed to mesh the domain. Such errors can be overcome by an oversampling strategy [61].

3.2 | Virtual fine-scale stiffness matrices160

The bilinear operator used in the coarse element sub-problem, defined in Eq. (14), is decomposed in a manner analo-
gous to Eq. (9):

a(uh, vh) =
nmel∑
i=1

aKm (uh, vh), [(uh, vh) ∈ VKh (Km(i)) × V
K
h0 (Km(i)) ⊂ Vh(KM(α)) × Vh0(KM(α)) (15)
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F IGURE 5 Schematic of the EMsVEM upscaling procedure. The case of linear boundary conditions for the
evaluation of multiscale basis functions is considered.

Contrary to the standard EMsFEM, in this work we employ virtual elements at the fine scale. Consequently, we adopt
a VEM discretization for the element-wise bilinear functional shown in Eq. (15):

aKm (uh, vh) ≡ aKm
(
(uh − Πεmk uh) + Πεmk uh, (vh − Πεmk vh) + Πεmk vh

)
, (16)

where Πεmk denotes the projector discussed in Section 2.2.165

Remark 3 To account for the potential non-polynomial expressions, standard Lagrange polynomials are not a suitable basis.
Rather, a canonical basis is utilised that is implicitly approximated in terms of a linear combination of conventional scaled
vector monomials. This is convenient because such monomials have simple analytic expressions. The problem of giving an
explicit form to the canonical basis is now reduced to computing the coefficients involved in the linear combination. To
accomplish this, functions belonging to virtual spaces need to be projected onto a polynomial space [Ðk(Km)]2 spanned by170

the scaled vector monomial basis [Ík(Km)]2.

Expanding Eq. (16) and exploiting the symmetry of the bilinear functional and the energetic orthogonality condi-
tion in Eq. (13), the following relation is obtained

aKm (uh, vh) = aKm (Πεmk uh,Πεmk vh) + aKm (uh − Πεmk uh, vh − Πεmk vh), (17)

where the first term consists entirely of polynomial expressions and can be exactly computed analytically (k = 1meth-
ods) or numerically (k ≥ 2methods) through the degrees of freedom defined in Eq. (10).. This is called the consistency175

term and involves the elliptic projection of the virtual element functions,i.e., Πεmk uh and Πεmk vh, respectively. The
second term on the right hand side of the expression, contains unknown non-polynomial integrands uh and vh. These
terms are not computable as elements of a virtual element space lack an explicit definition over the element interior.

The non-computable term is replaced with a computable bilinear form SKm (·, ·) that can account for strain energy
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associated with higher order deformation modes while ensuring coercivity; this is called the stability term. Hence, the180

final VEM approximation of the strain energy is expressed as:

aKm (uh, vh) ≈ aKm (Πεmk uh,Πεmk vh) + SKm (uh − Πεmk uh, vh − Πεmk vh). (18)

There exists several ways to define the approximated stability operator SKm (·, ·). One is referred to [62, 63] for a more
comprehensive discussion on the stability term. In this work, we adopt the D-recipe stabilization [64] that also ensures
correct scaling in relation to the consistency term. that is discussed in Appendix E for the sake of completeness.

Remark 4 The consistency term on its own is rank deficient. The stability term is included to restore coercivity. In the185

context of quadrilateral or hexahedral elements, the stability term can be interpreted as the hourglass stiffness. The term
can assume any bilinear form that satisfies the fundamental properties of coercivity and stability and reduces to zero over
polynomial subspaces. The easy-to-compute stability term introduces additional error into the formulation. However, this
approximation is chosen such that the error convergence rates are still optimal. It is for this reason that one should not expect
the VEM formulation to reduce to the familiar FEM approach in the case of, e.g., quadrilateral elements. In the select case190

of the three noded triangular element, the polynomial space used is complete to degree one. In this case the stability term
reduces to zero over polynomial subspaces and the consistency term coincides with the classical three-noded FEM stiffness
matrix.

The fine scale stiffness matrix Kel,α
m(i) is now defined on the basis of Eq. (18):

Kel,α
m(i) = aKm (uh, vh) =

∫
Km(i)

ε
(
Πεmk uh

)T
σ

(
Πεmk vh

)
dK︸                                         ︷︷                                         ︸

KC

+ SKm (uh − Πεmk uh, vh − Πεmk vh)︸                                      ︷︷                                      ︸
KS

,

[(uh, vh) ∈ VKh (Km(i)) × V
K
h0 (Km(i)),

(19)

where, KC is the consistency stiffness matrix and KS is the stability stiffness matrix whose expressions are provided195

in Appendices D and E, respectively.
As discussed in Section 2.2, the strains ε(·) cannot be directly evaluated on uh and vh as these are implicitly

defined. The projector Πεmk provides the functions with an explicit form by approximating them with a monomial
expansion. The projector Πεmk is evaluated using the following orthogonality condition at the micro-scale

aKm (uh − Πεmk uh,mj) = 0, [mj ∈ [Ík(Km)]
2 \ Ëεm (Km), (20)

The aforementioned monomial expansion for the term Πεmk uh is expressed as follows:200

Πεmk uh =
nk−3∑
i=1

simi, (21)

where mi ∈ [Ík(Km)]2 \ Ë
εm
k (Km). The quantity nk is

nk = (k + 1)(k + 2) (22)
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and denotes the number of vector valued monomials in [Ík(Km)]2.

Substituting Eq. (21) into Eq. (20) and simplifying, the following expression is derived

nk−3∑
i=1

siaKm (mi,mj)︸         ︷︷         ︸
G̃ij

= aKm (uh,mj)︸         ︷︷         ︸
Bij

. (23)

The procedure to evaluate the fine scale matrices G̃ and B is provided in Appendix C.

Eq. (23) is conveniently recast in matrix form as205

G̃Πεmk = B. (24)

where Πεmk is a vector comprising the coefficients si. Hence, the fine-scale projection operator is eventually derived
as

Πεmk = G̃−1B. (25)

Themicro-element stiffness matrix in Eq. (19) is used to assemble the coarse element specific RVE stiffness matrix
Kαm using a standard direct stiffness approach, i.e.,

Kαm =
nmel
A
i=1

Kel,α
m(i), (26)

where A is the assembly operator. The coarse element specific RVE load vector fαm is also similarly assembled from210

it’s micro-element contributions as

fαm =
nmel
A
i=1

fel,αm(i), (27)

where fel,αm(i) is the nodal force vector defined at the fine scale. This is established on the on the basis of Eqs. (5b) and
(9b) as

fel,αm(i) = FKm (vh) =
∫

Γt∈∂Km(i)

vTh t̄dΓ −
∫
Km(i)

vTh bdΩ, (28)

where Γt denotes the traction boundaries associated with the element under consideration. The body force and
traction terms can be computed by defining appropriate nodal quadrature rules over the micro-element interior and215

edge, respectively as detailed in [65].
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3.3 | Constructing multiscale basis functions

In the multiscale finite element framework utilized herein, the micro-displacement components of the fine mesh are
mapped to the macro-displacement nodal components of the corresponding coarse-element according to Eq. (29).

umx,i =
nM∑
J=1

NiJxxuMx,J +
nM∑
J=1

NiJxyuMy,J

umy,i =
nM∑
J=1

NiJyxuMx,J +
nM∑
J=1

NiJyyuMy,J

(29)

where umx,i and umy,i, i = 1, . . . , nm are the displacement components of the ith micro-node, nm is the number of220

micro-nodes within the coarse-element and nM = 4 is the number of macro-nodes of the coarse-element.
Moreover, uMx,J and uMy,J are the macro-displacement components defined at the Jth macro-node of the coarse-

element; NiJxx, NiJyy, NiJxy and NiJyx correspond to the micro-basis interpolation functions. Eqs. (29) hold if and only
if the micro-basis interpolation functions satisfy the following conditions

nM∑
J=1

NIJxx = 1
nM∑
J=1

NIJxy = 0

nM∑
J=1

NIJyx = 0
nM∑
J=1

NIJyy = 1
, I = 1 . . . nM (30)

At the fine-element scale, this mapping assumes the following form225

uαm(i) = Nm(i)uM(α), (31)

where uαm(i) is the displacement vector for the ith fine-element in the α th RVE. The array Nm(i) denotes the multiscale
basis functions mapping the associated coarse-nodal displacements in uM(α) to the current fine-element.

Collecting Eqs. (31) for all micro-elements within the coarse-element, the following equation is established

uαm = NmuM(α), (32)

where uαm comprises the nodal displacement of the fine-mesh contained within coarse-element α .
A set of interpolation functions satisfying Eqs. (30) (hence Eqs. (29) also) can be established by solving the230

following boundary value problem


Kαmuαm = 0 , on KM(α)

uS = ūIJ , on ∂KM(α)
, I = 1 . . . nM, J = 1, 2 (33)

where Kαm is the RVE stiffness matrix that is assembled according to Eq. (26), uS is the vector of boundary micro-nodal
displacements and ū are the the prescribed displacements obtained from imposing linear, periodic or oversampling
boundary conditions over the coarse-element/RVE boundary [see, e.g., 61, 2]. Each solution derived for a prescribed
set of boundary conditions ūIJ corresponds to a column of the multiscale basis function matrix Nm. Algorithm 1235

summarizes the procedural steps required for the evaluation of the micro-basis functions.

Remark 5 To retain consistency with the literature, each coarse-element is termed herein an RVE. This however should not
be confused with the typical definition of the RVE as employed within a scale separated homogenisation theory.
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F IGURE 6 RVE with 9 generalized (possibly non-convex) polygonal elements. The number of fine-elements and
fine-nodes in the RVE are nmel = 9 and nm = 17 respectively.

As an example, Eq. (31) assumes the following form for the case of the RVE shown in Fig. 6 and the micro-element
i = 6,240

u1m(6) = Nm(6)uM(1), (34)

where the vector of nodal displacements for fine-element #6 is

u1m(6) =
[
umx,7 umy,7 umx,8 umy,8 umx,13 umy,13 umx,12 umy,12

]T
, (35)

the coarse-element nodal displacement vector is

uM(1) =
[
uMx,1 uMy,1 uMx,2 uMy,2 uMx,6 uMy,6 uMx,5 uMy,5

]T
, (36)

and the corresponding multiscale basis function matrix is expressed as

Nm(6) =



Nxx7,1 Nxy7,1 Nxx8,1 Nxy8,1 Nxx13,1 Nxy13,1 Nxx12,1 Nxy12,1

Nxy7,1 Nyy7,1 Nxy8,1 Nyy8,1 Nxy13,1 Nyy13,1 Nxy12,1 Nyy12,1

Nxx7,2 Nxy7,2 Nxx8,2 Nxy8,2 Nxx13,2 Nxy13,2 Nxx12,2 Nxy12,2

Nxy7,2 Nyy7,2 Nxy8,2 Nyy8,2 Nxy13,2 Nyy13,2 Nxy12,2 Nyy12,2

Nxx7,3 Nxy7,3 Nxx8,3 Nxy8,3 Nxx13,3 Nxy13,3 Nxx12,3 Nxy12,3

Nxy7,3 Nyy7,3 Nxy8,3 Nyy8,3 Nxy13,3 Nyy13,3 Nxy12,3 Nyy12,3

Nxx7,4 Nxy7,4 Nxx8,4 Nxy8,4 Nxx13,4 Nxy13,4 Nxx12,4 Nxy12,4

Nxy7,4 Nyy7,4 Nxy8,4 Nyy8,4 Nxy13,4 Nyy13,4 Nxy12,4 Nyy12,4



, (37)

respectively.

For the RVE shown in Fig. 6, uαm is a 34×1 vector. Furthermore,Nm is the coarse-elementmatrix of multiscale basis245

functions; for the case of Fig. 6 this is a 34×8matrix. Each column j ofNm corresponds to the deformed configuration



14 Abhilash Sreekumar et al.

of the RVE when the jth coarse degree of freedom is equal to 1 whereas all other coarse degrees of freedom are equal
to zero.

Algorithm 1: multiscale basis function evaluation schema
Data: Define coarse mesh and fine mesh/micromesh and material properties

foreach coarse element α do

foreach micro element i do

Compute: Πεmk (see Eq. (25)) ;

Compute: KC, KS, and Kel,α
m(i) (see Eq. (19)) ;

Assemble to Kαm ;

end

foreach macro-node I = 1, . . . 4 do

foreach macro degree of freedom J = 1, 2 do

Define: ūI J ;

Solve:


Kαmuαm = 0

uS = ūI J
;

end

end

end

3.4 | Governing multiscale equilibrium equations

The element-wise equilibrium equations at the fine-scale of the RVE under consideration are250

Kel,α
m(i)u

α
m(i) = fel,αm(i), (38)

whereKel,α
m(i) and f

el,α
m(i) denote the fine-element stiffnessmatrix and load vector defined in Eqs. (19) and (28), respectively.

Substituting Eq. (31) into Eq. (38) results in the following expression:

Kel,α
m(i)Nm(i)uM(α) = fel,αm(i) .

Premultiplying this by NTm(i), the following relation is obtained:

Kel
M(α),m(i)uM(α) = felM(α),m(i), (39)

where Kel
M(α),m(i) corresponds to the fine-element stiffness matrix that is however, defined at the coarse nodes

Kel
M(α),m(i) = NTm(i)K

el,α
m(i)Nm(i), (40)
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and felM(α),m(i) to the corresponding vector of nodal forces

felM(α),m(i) = NTm(i)f
el,α
m(i), (41)

respectively.

The reduced order coarse element equilibrium equation can be established in the following form255

Kel
M(α)uM(α) = felM(α), (42)

where Kel
M(α) and felM(α) are the coarse element stiffness matrix and load vector respectively. These quantities are a

priori unknown but can be derived on the basis of strain energy equivalence between the coarse element and its
underlying fine scale mesh.

The overall strain energy Eint of the coarse element can be, in principle, established as

Eint =
∫

KM(α)

εTMσM dK = uTM(α)K
el
M(α)uM(α) (43)

where ε and σ correspond to the strain and stress fields defined over the RVE.260

However, the RVE strain energy can also be considered to be additively decomposed into the contributions of
the associated fine-scale elements, i.e.,

Eint =
nmel∑
i=1

∫
Km(i)

εα Tm(i)σ
α
m(i) dK =

nmel∑
i=1

uα Tm(i)K
el,α
m(i)u

α
m(i), (44)

Comparing Eq. (43) to Eq. (44), the following expression is established

uTM(α)K
el
M(α)uM(α) =

nmel∑
i=1

uα Tm(i)K
el,α
m(i)u

α
m(i) . (45)

Substituting Eq. (31) into Eq. (45) results in the following expression:

uTM(α)K
el
M(α)uM(α) = uTM(α)

nmel∑
i=1

(
NTm(i)K

el,α
m(i)Nm(i)

)
uM(α) (46)

Eq. (46) holds if and only if265

Kel
M(α) =

nmel∑
i=1

Kel
M(α),m(i) (47)

Similarly, the following expression must hold for the RVE reduced order nodal load vector, i.e.,

felM(α) =
nmel∑
i=1

felM(α),m(i) . (48)



16 Abhilash Sreekumar et al.

The reduced order RVE stiffness and nodal load matrices defined in Eqs. (47) and (48) can be assembled using a
direct stiffness method to eventually derive the reduced order global equilibrium equation

KMuM = fM, (49)

where

KM =

nMel
A
α=1

Kel
M(α), fM =

nMel
A
α=1

fM(α), (50)

and A denotes a standard direct stiffness assembly operator.270

3.5 | Solution at the coarse scale

Having computed Kel,α
m(i), the multiscale basis functions can be evaluated by assembling Kαm and solving Eq. (33). The

global system of equations at the coarse-scale has already been established in Eq. (49):

KMuM = fM, (51)

whereKM and fM denote the 2nM×2nM global coarse stiffnessmatrix and 2nM×1 global coarse load vector respectively.
The global coarse stiffness is assembled from its local coarse stiffness contributions as shown in Eq. (50). The global275

coarse load vector is evaluated from the local coarse element load contributions. Finally, the EMsVEM solution is
performed for the nM coarse-scale nodes uM.

The micro-displacements can be evaluated from the solution of the reduced order solution of Eq. (51) using the
following down-scaling procedure. The coarse element-wise displacements are first extracted from uM and stored in
the vector of macro-element nodal displacements uM(α), α = 1 . . . nMel . The displacements associated with the ith280

fine-element in the α th coarse-element / RVE is computed using Eq. (31). The strains and stresses associated with
these fine-scale displacements can be computed as follows:

εαm(i) = Buαm(i ) σαm(i) = Ãε
α
m(i) (52)

where B is the term provided in Eq. (23). These strains and stresses are uniform over the ith fine-element domain. To
allow for compatibility with traditional post-processing routines, the element is decomposed into sub-triangles. The
evaluated stresses and strains are then associated with desired quadrature integration points.285

The process flow of the EMsVEM is graphically shown in Fig. 7.

4 | APPLICATIONS

The EMsVEM is verified by comparing against the standard VEM and analytical solutions. A first order VEM (k=1), is
used in all cases. In the following, the four different element-types illustrated in Fig. 8 are used for the verification. The
Centroidal Voronoi Tessellations (CVT) shown in Fig. 8b were generated by Lloyd’s algorithm [66] with the generated290

seeds being forced to coincide with the associated centroid of each polygon. The Random Voronoi Elements (RAND)
shown in Fig. 8d were created by a random set of seeds. The polygonal meshes were generated using PolyMesher
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F IGURE 7 Process flow of the Enhanced Multiscale Virtual Element procedure.

[67].

To investigate the fidelity of the proposed method, the L2 norm and the H1 semi-norm are employed for the
displacement and stress/strain approximations, respectively.

| |uh,M − uex,M | |L2 =

√√√√
1

nMel

nMel∑
i=1

〈uM(i) − uM(i),ex, uM(i) − uM(i),ex 〉

〈uM(i),ex, uM(i),ex 〉
(53a)

|uh,M − uex,M |H1 =

√√√√
1

nMel

nMel∑
i=1

〈ε(uM(i) − uM(i),ex),σ(uM(i) − uM(i),ex)〉

〈ε(uM(i)),ex),σ(uM(i),ex)〉
(53b)

where 〈·, ·〉, uh,M and uex,M denotes the scalar product, the numerically evaluated coarse-nodal displacements and
the reference solution at the coarse-nodes, respectively.295
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(a) (b) (c) (d)

F IGURE 8 Element types (a) Quadrilateral (b) Centroidal Voronoi Tessellations (c) Triangle (d) Random Voronoi.

4.1 | Square plate under tension

The case of the homogeneous square plate shown in Fig. 9a is considered herein. The plate is fully clamped at the
bottom and subjected to a traction vector t =

[
0 10

]T
at the top edge as shown in Fig. 9. The vertical sides

are left unconstrained. The material has a Young modulus E = 107 N/m2 and a Poisson’s ratio ν = 0.3. A mesh

(a) (b)

F IGURE 9 (a) Geometry and boundary conditions (b) Multiscale mesh

discretization of 40× 40 quadrilateral plane stress elements with full integration is employed for the FEM and VEM as300

shown. The EMsFEM and EMsVEM solutions are derived considering a coarse mesh consisting of 5 × 5 quadrilateral
coarse-elements. This is illustrated by the coarse-grid in Fig. 9b. Each coarse-element contains 8 × 8 quadrilateral
fine-elements. The case of rectangular elements only is considered in this case for comparisons between the virtual
element and finite element based methods to be meaningful. Linear boundary conditions are used to derive the
multiscale basis functions for this example.305

The L2-norm of the errors between the FEM and the EMsFEM is 5.7×10−3. The corresponding norm for the VEM
to EMsVEM comparison is practically the same, i.e., 5.5 × 10−3. A convergence study is also performed by retaining
the same number of coarse-elements as shown in Fig. 9b, and increasing the number of fine-scale elements.

The evolution of the L2-norm as a function of the number of elements is provided in Fig. 10, where the EMsFEM
and EMsVEM behave in an identical fashion. A reference slope is also shown for comparison of error convergence310
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F IGURE 10 Relative error plots: EMsFEM and EMsVEM evaluated displacements compared against FEM and
VEM displacements respectively, at coarse-nodes. A reference slope is provided for comparison.

rates. Near optimal rates are observed for both methods.

4.2 | Cantilever beam subjected to parabolic traction

The cantilever structure shown in Fig. 11 is fully clamped at the left and is subjected to a parabolic traction at its free
end. The domain has a length L = 8 m, height D = 4 m and thickness t = 1m. The material has a Young’s modulus
E = 107 N/m2 and a Poisson’s ratio ν = 0.3. The parabolic traction at the free end assumes the following form315

tx = 0, ty =
p(D2/4 − y2)

2I , (54)

where p = −1000 N is the total load applied and I = tD3
/
12.

The displacements are evaluated analytically on the basis of plane strain assumptions [68] according to Eqs. (55a)
and (55b) for the horizontal and vertical component, respectively

ux = −
py
6ĒI

(
(6L − 3x)x + (2 + ν̄)y2 − 3D

2

2
(1 + ν̄)

)
(55a)

uy =
p
6ĒI

(
3ν̄y2(L − x) + (3L − x)x2

)
, (55b)

where Ē = E
1−ν2

and ν̄ = ν
1−ν .

Three different geometries of micro-structure elements are considered; these are summarized in Table 1. The
problem is also solved with the EMsFEM for the case of quadrilateral micro-elements.

The convergence behaviour of the EMsFEM and the EMsVEMwith respect to different element-types specified in320

Table 1 is investigated in the form of relative L2 and H1 error convergence plots shown in Fig. 12 and Fig. 13. The evo-
lution of the errors are studied as a function of the number of coarse-elements, for 5 micro-structure configurations.
At low discretizations (Figs. 12 a, 12 b, 13 a and 13 b), the EMsFEM solution provides the best accuracy. However, for
finer micro-structure configurations (Figs. 12 e and 13 e), the CVT , RAND and QUAD element meshes used by the
EMsVEM offer accuracies approaching the QUAD EMsFEM method, over all coarse-element mesh discretizations.325
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F IGURE 11 Schematic diagram of a cantilever beam subject to parabolic tractions

Element Type Abbreviation EMsFEM EMsVEM

Quadrilateral QUAD � �

Centroidal Voronoi Tessellations CVT - F

Random RAND - ∗

TABLE 1 Convergence behaviour of EMsFEM and EMsVEM are studied with respect to different element types

The convergence rates are provided in Table 2 and Table 3. These are found to nearly coincide with the expected
theoretical slopes of -2 in the L2 and -1 in the H1 relative error norms, respectively. The theoretical convergence
rates are derived in [69]. One can conclude that near-optimal convergence rates are obtained by the method over all
coarse-element discretizations. This suggests that the EMsVEM is a viable alternative to the EMsFEMwhen a flexible
mesh generation is required to account for fine-scale heterogeneities.330

No. of micro-elements CVT RAND QUAD EMsFEM

4 -1.8868 -1.9303 -1.9012 -1.9244

16 -1.9547 -1.8829 -1.9255 -1.9325

100 -1.9635 -1.9200 -1.9343 -1.9355

625 -1.8931 -1.9358 -1.9358 -1.9359

2500 -1.9799 -1.9359 -1.9359 -1.9360

TABLE 2 Convergence rates of the L2 relative error norm

The primary advantage offered by the EMsVEM over the EMsFEM lies in its ability to handle any kind of micro-
structure configuration. This is illustrated by computing displacements with the EMsVEM for a 10×10 coarse-element
discretization with an arbitrarily chosen micro-structure definition described in Table 4. The contour plots of the
resulting total displacements are shown in Fig. 14.

Figs. 14a and 14b illustrate the method’s ability to sufficiently handle widely varying micro-structural configura-335
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(a) 4 micro-elements (b) 16 micro-elements

(c) 100 micro-elements (d) 625 micro-elements

(e) 2500 micro-elements

F IGURE 12 Relative L2 error convergence plots for 5 micro-structure configurations

tions within a single problem. The corresponding y-displacements obtained for the free end of the neutral axis of the
structure are compared against the analytical solution in Table 5.

4.3 | Cantilever beam with a periodic microstructure

In this example, a cantilever beam with periodically repeating circular inclusions is considered. A 30 × 6 coarse grid is
created over this domain as shown in Fig. 15a. The micro-structure enclosed within each coarse element contains a340
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(a) 4 micro-elements (b) 16 micro-elements

(c) 100 micro-elements (d) 625 micro-elements

(e) 2500 micro-elements

F IGURE 13 Relative H1 error convergence plots for 5 micro-structure configurations

circular inclusion as illustrated in Fig. 15b. Thematerial properties considered are Em = 1GPa, νm = 0.3 and Ei = 10GPa,
νi = 0.3 for the matrix m and the inclusion i, respectively.

This example is provided to establish the EMsVEM as a useful tool in the analysis of composites for driving down
computational costs. To prove this claim, we draw attention to the relaxed conformity requirements on polygonal
meshes when compared with conventional quadrilateral finite element meshes. This flexibility is exploited to mini-345

mize the number of nodes involved in the micro-structural discretization while still retaining satisfactory accuracy. In
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No. of micro-elements CVT RAND QUAD EMsFEM

4 -0.9681 -0.9724 -0.9695 -0.9750

16 -0.9781 -0.9709 -0.9752 -0.9773

100 -0.9809 -0.9765 -0.9780 -0.9784

625 -0.9742 -0.9785 -0.9785 -0.9786

2500 -0.9829 -0.9786 -0.9786 -0.9786

TABLE 3 Convergence rates of the H1 relative error norm

No. Element Type No. of Elements

1 TRI 64

2 QUAD 25

3 RAND 36

4 CVT 100

TABLE 4 Arbitrarily chosen micro-structural definition assigned periodically to each unit-cell

Numerical solution Analytical solution

−2.91 × 10−3 m −2.96 × 10−3 m

TABLE 5 Neutral axis free end displacements in the y-direction computed using EMsVEM and analytical solution.

particular, the microstructure is discretized using three approaches, i.e, uniform quadrilateral elements, uniform polyg-
onal CVT elements, and an adaptively refined mesh as shown in Fig. 16. Mesh 1, schematically depicted in Fig. 16a,
comprises 10,116 uniform quadrilateral elements and is treated as a reference solution. Mesh 2, contains 5000 uni-
form CVT elements and is shown in Fig. 16b. Mesh 3 (Fig. 16c) is adapted from [70], wherein efficient polygonal350

discretizations are exploited for performing a non-linear analysis on fiber composites. The properties of each mesh
are summarized in Table 6. Periodic boundary conditions are used to derive the multiscale basis functions, for all
cases.

Label Element-Type No. of Elements No. of Nodes Description

Mesh 1 QUAD 10116 10299 Reference Solution

Mesh 2 CVT 5000 7278 Uniform mesh

Mesh 3 POLY 1441 2452 Adaptive mesh

TABLE 6 Meshes used to discretize the micro-structure

The L2 and H1 error norms obtained by Mesh 2 and Mesh 3 are summarized in Table 7. It is observed that both
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(a) ux : Displacements in x-direction

(b) uy : Displacements in y-direction

F IGURE 14 Total displacement contours for the arbitrarily chosen micro-structure defined in Table 4 - Units are
in m.

meshes achieve comparable accuracy despite the fact that Mesh 2 has a considerably larger number of DoFs. The355

computational time for all cases, averaged over 5 runs is shown in Table 7. This result illustrates appreciable benefits
attainable through the EMsVEM by using more flexible mesh generation capabilities.

L2 error norm H1 error norm Analysis time [sec]

Mesh 1 - - 3870

Mesh 2 0.0062 0.047 1015

Mesh 3 0.0056 0.050 215

TABLE 7 L2 and H1 error norms for Mesh 2 and Mesh 3 using Mesh 1 as a reference solution and
computational times.
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F IGURE 15 Cantilever with a periodic micro-structure: Geometry and boundary conditions

(a) (b)

(c)

F IGURE 16 Element types (a) Uniform Quadrilateral, (b) Centroidal Voronoi Tesselations (c) Specially designed
polygonal mesh

Contour plots of the total displacements are shown in Fig. 17a and Fig. 17b for the EMsVEM-Pmodel withMesh 3
and the standard VEM, respectively. The corresponding von-Mises stresses σVM are provided in Fig. 18a and Fig. 18b
for the EMsVEM and the VEM, respectively. Both methods provide practically identical results, as also manifested by360

the L2 and H1 norms shown in Table 7.
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(a) Evaluated using the EMsVEM-P

(b) Evaluated using VEM

F IGURE 17 Total displacement contours - Units are in m

4.4 | Cantilever beamwith a highly heterogeneousmaterial distribution subjected to parabolic
traction

The case of the cantilever beam examined in Section 4.2 and shown in Fig. 11 is considered here also. In this case,
we investigate the effect of the material heterogeneity on the performance of the proposed EMsVEM both in terms365

of accuracy and computational efficiency. The results obtained from the EMsVEM are compared against the standard
VEM. Comparisons are also provided against the standard FEMand the EMsFEM for the case of quadrilateral elements.
To investigate the effect of the assumed boundary conditions for the evaluation of the multiscale basis functions, two
variants are considered, i.e., linear and periodic boundary conditions. The abbreviations of the multiscale methods
used in this example are shown in Table 8.370

Three cases are considered vis-a-vis the geometry of the fine-scale, i.e., with heterogeneities having (a) QUAD,
(b) CVT and (c) RAND shapes. Furthermore, two discretizations are examined per case, to assess the the effect of the
scale separation on the accuracy of the EMsVEM. The models employed along with their corresponding coarse and
fine-scale discretizations are summarized in Table 9.

Each micro-element in both discretization schemes is randomly assigned a Young’s modulus generated by a375
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(a) Evaluated using the EMsVEM-P

(b) Evaluated using VEM

F IGURE 18 Von Mises stress contours - Units are in MPa

Abbreviation Method/ Boundary conditions

EMsFEM-L Multiscale Finite Element Method/ Linear

EMsFEM-P Multiscale Finite Element Method/ Periodic

EMsVEM-L Multiscale Virtual Element Method/ Linear

EMsVEM-P Multiscale Virtual Element Method/ Periodic

TABLE 8 Multiscale method labeling based on the boundary conditions used to evaluate the multiscale basis
functions.

uniform distribution. The lower and upper bounds of the Young’s modulus are considered to be El = 1 GPa and
Eu = 100 GPa, respectively. The material distribution associated with discretization scheme B is illustrated in Fig. 19.
This material distribution within the coarse-element is assumed to repeat periodically over the entire domain. The
Poisson’s ratio is 0.3 in all cases.

The profile of the vertical displacements along the neutral axis (y = 0) of the structure are shown for all the cases380
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(a)

(b)

(c)

F IGURE 19 Snapshots of randomly distributed Young’s modulus in a typical coarse-element with (a) 144 QUAD
fine-elements (b) 144 CVT fine-elements (c) 144 RAND fine-elements - Units are in GPa

in Fig. 20. For discretization scheme A, shown in Figs. 20a, 20c, and 20e, a significant deviation in the displacements
obtained through FEM and VEM and the multiscale solutions is observed. Themethods using periodic boundaries, i.e.,
EMsFEM-P and EMsVEM-P are found to approximate the complete solutions better than EMsFEM-L and EMsVEM-L.

On the other hand, in the case of the finer discretization scheme B, as shown in Figs. 20b, 20d and 20f, all
methods provide practically identical results. The relative error of the EMsVEM to the VEM solution for linear and385
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Discretization A Discretization B

Full Mesh Multiscale Mesh Full Mesh Multiscale Mesh

[-] Macro Micro [-] Macro Micro

Quad 720 15x3 16 72000 50x12 144

CVT 720 15x3 16 72000 50x12 144

RAND 720 15x3 16 72000 50x12 144

TABLE 9 Number of elements considered in each run. The discretization scheme B is illustrated in Fig. 19.

periodic boundary conditions is shown in Table 10. These are practically identical to the relative errors of the EMsFEM
to FEM solution which are also shown in Table 10 for completeness.

The horizontal displacements (ux ) obtained for the micro-structure using RAND elements and the discretization
scheme B are indicatively shown in Fig. 21a and Fig. 21b for the VEM and EMsVEM-P, respectively. The Von-Mises
stress distribution (σVM) obtained for all cases using the discretization scheme B, are shown in Fig. 22.390

Discretization A Discretization B

Quad CVT RAND Quad CVT RAND

EMsFEM-L 0.2246 - - 0.0562 - -

EMsFEM-P 0.1402 - - 0.0072 - -

EMsVEM-L 0.2256 0.1953 0.242 0.061 0.0807 0.12

EMsVEM-P 0.1440 0.1111 0.1618 0.0076 0.0144 0.0233

TABLE 10 Relative L2 errors between standard solutions and multiscale solutions computed at coarse-nodes.

4.4.1 | Discussion on computational gains

To assess the computational effectiveness of the EMsVEM, we evaluate the time required for the assembly and inver-
sion of the global state matrices for all the methods employed. The average times over five runs are shown in Fig. 23.
There is an appreciable reduction in the time taken for assembly and matrix inversion when using multiscale meth-
ods, as evidenced by Fig. 23a and Fig. 23b. This is to be expected as the number of nodes involved in the multiscale395

assembly and solution procedures are significantly reduced when compared to the standard FEM and VEM.

Furthermore, the time required in the EMsVEM is significantly lower when compared to the EMsFEM. This is
attributed to the fact that there are no iterative evaluations over quadrature integration points done in the case of first
order EMsVEM as opposed to the EMsFEM. In Fig. 23c, post-processing times are also compared for all methods. This
is to account for the effect potential overheads might have on the computational efficiency of the methods, especially400

within an incremental/ iterative solution scheme. The time required for the multiscale methods to downscale the
coarse-solution is also captured here.

While it is clear from Fig. 23d that post-processing is a significant factor for the multiscale methods, Fig. 23c
reveals that this is indeed lower than in the corresponding fine scale implementations. This is due to the fact that down-
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(a) Discretization Scheme A with QUAD elements (b) Discretization Scheme B with QUAD elements

(c) Discretization Scheme A with CVT elements (d) Discretization Scheme B with CVT elements

(e) Discretization Scheme with RAND elements (f) Discretization Scheme B with RAND elements

F IGURE 20 Vertical displacement along the neutral axis of the cantilever

scaling is performed per coarse element, hence implicitly vectorizing the corresponding strain and stress computation405

loops.

5 | CONCLUSIONS

A novel EnhancedMultiscale Virtual Element Method, termed the EMsVEM, is developed for the analysis of heteroge-
neous elastic structures. The novelty of the EMsVEM rests on the utilisation of the Virtual ElementMethod at the fine
scale to enable flexible meshing that can efficiently capture any type of domain heterogeneity. Numerically computed410

multiscale basis functions upscale the heterogeneities allowing the solution procedure to be performed at the coarse
scale. Subsequently, the solution is downscaled to capture local fine scale variations.
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(a) Evaluated using the VEM with RAND elements (b) Evaluated using EMsVEM-P with RAND elements

F IGURE 21 Visualization of ux (x-displacement) distributions for RAND elements with discretization scheme B.

The EMsVEM efficiently models complex geometries at the micro-scale while retaining the accuracy of the stan-
dard Finite Element Method and its EMsFEM variant. The proposed method is validated against analytical solutions
and the standard FEM and VEM. Our convergence studies demonstrate that the EMsVEM is well behaved even in415

cases of significant heterogeneities in the fine-scale.
Based on the computational advantages of the VEM, stemming from its flexible element geometries and the re-

laxed requirement on domain integration, the EMsVEM is shown to significantly reduce the complexity of the compu-
tational problem compared to the standard FEM and the EMsFEM. The computational upscaling procedure proposed
is shown to significantly reduce the computational costs compared to the standard VEM.420

The ability of the method to handle adaptively refined virtual element meshes at the fine scale is also demon-
strated. According to our observations, intelligently chosen polygonal fine scale discretizations drive down computa-
tional costs without significantly sacrificing accuracy.

Similar to the standard EMsFEM, the boundary conditions used to derive the multiscale basis functions play a
critical role in the accuracy of the method. Periodic boundary conditions are shown to offer a better account of the425

heterogeneous behaviour when significant heterogeneities are present.
A limitation of the proposed method is that it is confined to the utilisation of quadrilateral coarse element ge-

ometries. Extending the method to account for the most general case of polygonal coarse element representations is
currently under development.
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A | VIRTUAL ELEMENT SPACES

The global virtual space of kth order Vh is defined as575

Vh := {vh ∈ [H1(Ω) ∩ C 0(Th)]
2 : vh |K ∈ VKh (K), [K ∈ Th }, (56)

where the local virtual space VKh is defined over an element K as

VKh (K) := {vh ∈ [H
1(K) ∩ C 0(K)]2 : vh,i |e ∈ Ðk(e)[e ∈ ∂K; ∆vh,i |K ∈ Ðk−2(K) for i = 1, 2}. (57)

This space is spanned by a basis implicitly defined through the associated degrees of freedom (DOFs) defined in
Eq. (10).

B | MONOMIAL SPACES

The monomial space can be defined iteratively as follows,

[Í0(Km)]
2 =

{(
1

0

)
,

(
0

1

)}
[Ík(Km)]

2 =

{
[Ík−1(Km)]

2,

(
ξk

0

)
,

(
0

ξk

)
,

(
ξk−1η

0

)
,

(
0

ξk−1η

)
, . . .

(
ηk

0

)
,

(
0

ηk

)}
,

where ξ and η denote the scaled scalar monomials x−xKm
hKm

and y−yKm
hKm

, respectively. The centroid and diameter of the580

element are contained in (xKm , yKm )T and hKm respectively. The number of vector valued monomials in [Ík(Km)]2

is generalizable to nk = (k + 1)(k + 2). The bases specific to rigid body motion are contained in Ëεm (Km); two for
translations and one for rotation, i.e.,

Ëεm (Km) = span
{(
1

0

)
,

(
0

1

)
,

(
η

−ξ

)}
. (58)

C | EVALUATION OF THE VEM MATRICES G̃ AND B

Only the expressions necessary for the derivations provided in the main manuscript are provided herein. For a more585

extensive discussion [see, e.g. 58]. The weak form defined in Eq. (23) is re-written here for convenience:

nk−3∑
i=1

siaKm (mi,mj)︸         ︷︷         ︸
G̃ij

= aKm (uh,mj)︸         ︷︷         ︸
Bij

(59)
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This is written in a more explicit form as follows:

nk−3∑
i=1

s i

∫
Km

εm(mi)
T σm(mj) dK︸                           ︷︷                           ︸
G̃

=

∫
Km

εm(wh)
T σm(mj) dK︸                           ︷︷                           ︸
B

. (60)

In this, the left hand side term G̃ can be evaluated in a straightforward manner since it contains only vector valued
monomials. The right hand side term is expanded according to Eq. (61) as∫

Km

εm(uh)T σm(mj)︸                     ︷︷                     ︸
B

dK = −

∫
Km

uh · (div(σm(mj))) dK︸                                ︷︷                                ︸
Bi

+
∑

e∈∂Km

∫
e

uh · (σm(mj)ne) de.︸                                  ︷︷                                  ︸
Bb

(61)

The domain integral Bi in Eq. (61) vanishes for k = 1. When k ≥ 2, further manipulation of the integral is necessary.590

The term div(σm(mj)) is expanded out as follows:

div(σm(mj)) =
nk−2∑
β=1

djβmβ , (62)

wheremβ ∈ [Ík−2(Km)]2. The coefficients of the linear expansion djβ directly depend on the material properties and
can be obtained through inspection ([see, e.g. 58]). Substituting Eq. (62) into the expression for Bi in Eq. (61) yields
the following form

Bi = −|Km |
nk−2∑
β=1

djβdof2kNv+β (uh) = −|Km |d. (63)

where dofi in Eq. (63) is the value of uh at the ith degree of freedom. Here, the definition of the dof operator at interior595

nodes (see Eq. (10)) is exploited.

The boundary integral Bb in Eq. (61) can be evaluated directly using a Gauss-Lobatto quadrature rule according
to Eq. (64)

Bb =
Nv∑
i=1

k+1∑
j=1

1

2
(NeNP)TNV(xj)liwj, (64)

where li is the length of the edge under consideration, wj is the Gauss-Lobatto weight of the boundary node located
on that edge, NV(xj) is the matrix of the canonical basis functions evaluated at the edge node j, NP is the matrix of600

Ãε(mj), and Ne denotes the outwards looking normal edge vector written in matrix form as

Ne =

[
nx 0 ny
0 ny nx

]
. (65)
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Hence, matrix B in Eq. (61) eventually becomes

B =
[
Bb , Bi

]
. (66)

and Eq. (60) can be expressed in the convenient matrix representation

G̃Πεmk = B, (67)

where G̃ is the left hand term in Eq. (60) and can be readily computed. For k = 1 methods, this can be fairly trivial
as the integrand is comprised of constants. For higher order methods, numerical integration over sub-triangulated605

domains might be necessary. It can also be verified using the relation G̃ = BD as shown in [60]. Πεmk is the vector
representation of the projection operator. One solves for this:

Πεmk = G̃−1B. (68)

D | CONSISTENCY TERM

The consistency term KC shown in Eq. (19) is defined as

KC = Π
εm
k

T
[∫
Km

εm(mi)
T σm(mj) dK︸                           ︷︷                           ︸
G̃

]
Πεmk i, j = 1, ..., nk . (69)

where the matrix G̃ and Πεmk are provided in Appendix C and nk is the number of vector valued monomials defined in610

Eq. (22).

E | STABILIZATION TERM

To avoid hourglass modes and to ensure the coercivity of the bilinear approximation and positive definiteness of the
stiffness matrix in Eq. (19), an additional contribution is required that stems from the so-called stabilisation term.
The stability term classically employed in several works was originally proposed in [41, 57]. The associated stability615

stiffness matrix contribution K(1)S is evaluated according to Eq. (70) as

K(1)S = (I − Πεmtot )
T |Km |(I − Πεmtot ), (70)

where the factor |Km | has been included to ensure scaling of the stability energy with the element size. However, it
has been reported in [69] that this choice of the stability term may lead to non-optimal error convergence rates in the
case of three dimensional higher-order methods.

An alternate strategy, the D-recipe stabilization, was proposed in [64]. This has been adapted into an engineering620

context in [65] and reads as follows:

K(2)S = (I − Πεmtot )
T β (I − Πεmtot ), (71)
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where β is a modified stability parameter, i.e.,

β = γβ∗, (72)

where γ = 1 and

β ∗ = |Km |
tr(Ã)

tr(DTD)
. (73)

This choice of the stability parameter is preferable to the one used in Eq. (70). In cases where the energy associated
with the consistency term is very high, the stabilisation effects provided by K(1)S tend to be negligible. Conversely,625

the choice K(2)S ensures correct scaling in relation to the consistency term. In this work, we employ the D-recipe
stabilization in Eq. (71).

The projector Πεmtot in Eqs. (70) and (71) is defined as

Πεmtot = DΠεmk +DrbΠ
εm
rb , (74)

where the matrix D contains the monomials evaluated at each DoF and is defined as

D =


dof1(m1) . . . dof1(mnk−3)
.
.
. . . .

.

.

.

dofn(m1) . . . dofn (mnk−3)


, (75)

where dofi(mj), i = 1, 2, ..., 2kNv denotes the value of the jthmonomial at the ith DoF. The internal DoFs, i.e., dofi(mj), i =630

2kNv + 1, ..., n are evaluated according to the second moments definition of the degrees of freedom in Section 2.2,
using numerical integration, i.e.,

dof2kNv+β (mj) =
1

|Km |

∫
Km

mj ·mβ dK [mβ ∈ [Ík−2(Km)]
2 . (76)

Furthermore, in Eq. (74), Πεmk is the projector computed in Eq. (68) and Πεmrb is defined as

Πεmrb = G̃−1rb Brb, (77)

where G̃rb = BrbDrb, and Drb contains the monomials associated with rigid body motion evaluated at each DoF in a
similar way to Eq. (75).635

Finally, the matrix Brb assumes the following special form

Brb =


1/Nv 0 1/Nv 0 . . .

0 1/Nv 0 1/Nv . . .

η (x1) −ξ (x1) η (x2) −ξ (x2) . . .

 . (78)


