225 research outputs found

    Electron microscopic studies on the palpi of Cybister fimbriolatus fimbriolatus (Say)

    Full text link
    The maxillary palpi of the predaceous diving beetle Cybister fimbriolatus fimbriolatus Say were observed by transmission and scanning electron microscopy. Scanning electron microscopy shows at least two types of sensilla at the tip of palp, which are referred to as “circumvallate and naked sensilla”. The former are innervated with outer segments of distal processes of sensory cells, but the latter are provided only with chitin and cuticular substances.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47659/1/441_2004_Article_BF00330709.pd

    Quantitative Characterization of the Filiform Mechanosensory Hair Array on the Cricket Cercus

    Get PDF
    Crickets and other orthopteran insects sense air currents with a pair of abdominal appendages resembling antennae, called cerci. Each cercus in the common house cricket Acheta domesticus is approximately 1 cm long, and is covered with 500 to 750 filiform mechanosensory hairs. The distribution of the hairs on the cerci, as well as the global patterns of their movement vectors, have been characterized semi-quantitatively in studies over the last 40 years, and have been shown to be very stereotypical across different animals in this species. Although the cercal sensory system has been the focus of many studies in the areas of neuroethology, development, biomechanics, sensory function and neural coding, there has not yet been a quantitative study of the functional morphology of the receptor array of this important model system.We present a quantitative characterization of the structural characteristics and functional morphology of the cercal filiform hair array. We demonstrate that the excitatory direction along each hair's movement plane can be identified by features of its socket that are visible at the light-microscopic level, and that the length of the hair associated with each socket can also be estimated accurately from a structural parameter of the socket. We characterize the length and directionality of all hairs on the basal half of a sample of three cerci, and present statistical analyses of the distributions.The inter-animal variation of several global organizational features is low, consistent with constraints imposed by functional effectiveness and/or developmental processes. Contrary to previous reports, however, we show that the filiform hairs are not re-identifiable in the strict sense

    A doublecortin containing microtubule-associated protein is implicated in mechanotransduction in Drosophila sensory cilia

    Get PDF
    Mechanoreceptors are sensory cells that transduce mechanical stimuli into electrical signals and mediate the perception of sound, touch and acceleration. Ciliated mechanoreceptors possess an elaborate microtubule cytoskeleton that facilitates the coupling of external forces to the transduction apparatus. In a screen for genes preferentially expressed in Drosophila campaniform mechanoreceptors, we identified DCX-EMAP, a unique member of the EMAP family (echinoderm–microtubule-associated proteins) that contains two doublecortin domains. DCX-EMAP localizes to the tubular body in campaniform receptors and to the ciliary dilation in chordotonal mechanoreceptors in Johnston's organ, the fly's auditory organ. Adult flies carrying a piggyBac insertion in the DCX-EMAP gene are uncoordinated and deaf and display loss of mechanosensory transduction and amplification. Electron microscopy of mutant sensilla reveals loss of electron-dense materials within the microtubule cytoskeleton in the tubular body and ciliary dilation. Our results establish a catalogue of candidate genes for Drosophila mechanosensation and show that one candidate, DCX-EMAP, is likely to be required for mechanosensory transduction and amplification

    Modelling a Historic Oil-Tank Fire Allows an Estimation of the Sensitivity of the Infrared Receptors in Pyrophilous Melanophila Beetles

    Get PDF
    Pyrophilous jewel beetles of the genus Melanophila approach forest fires and there is considerable evidence that these beetles can detect fires from great distances of more than 60 km. Because Melanophila beetles are equipped with infrared receptors and are also attracted by hot surfaces it can be concluded that these infrared receptors are used for fire detection

    'Omic approaches to preventing or managing metastatic breast cancer

    Get PDF
    Early detection of metastasis-prone breast cancers and characterization of residual metastatic cancers are important in efforts to improve management of breast cancer. Applications of genome-scale molecular analysis technologies are making these complementary approaches possible by revealing molecular features uniquely associated with metastatic disease. Assays that reveal these molecular features will facilitate development of anatomic, histological and blood-based strategies that may enable detection prior to metastatic spread. Knowledge of these features also will guide development of therapeutic strategies that can be applied when metastatic disease burden is low, thereby increasing the probability of a curative response

    It’s Not a Bug, It’s a Feature: Functional Materials in Insects

    Full text link
    Over the course of their wildly successful proliferation across the earth, the insects as a taxon have evolved enviable adaptations to their diverse habitats, which include adhesives, locomotor systems, hydrophobic surfaces, and sensors and actuators that transduce mechanical, acoustic, optical, thermal, and chemical signals. Insect‐inspired designs currently appear in a range of contexts, including antireflective coatings, optical displays, and computing algorithms. However, as over one million distinct and highly specialized species of insects have colonized nearly all habitable regions on the planet, they still provide a largely untapped pool of unique problem‐solving strategies. With the intent of providing materials scientists and engineers with a muse for the next generation of bioinspired materials, here, a selection of some of the most spectacular adaptations that insects have evolved is assembled and organized by function. The insects presented display dazzling optical properties as a result of natural photonic crystals, precise hierarchical patterns that span length scales from nanometers to millimeters, and formidable defense mechanisms that deploy an arsenal of chemical weaponry. Successful mimicry of these adaptations may facilitate technological solutions to as wide a range of problems as they solve in the insects that originated them.Insects have evolved manifold optimized solutions to everyday problems. The diversity and precision of their hierarchical material adaptations often outsmart and outperform current man‐made approaches. These materials hence provide an excellent basis for the inspiration of new technological approaches by taking design cues from nature’s solutions.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143760/1/adma201705322.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143760/2/adma201705322_am.pd

    Die Empfindlichkeit motiler Cilien fĂźr mechanische Reize

    No full text

    An Insect Mechanoreceptor Part I: Fine Structure and Adequate Stimulus

    No full text
    This paper describes results of one part of an investigation concerned with the transducer process in hair plate receptors of the honey bee. The object of this part was to study in parallel the fine structure and the adequate stimulating events affecting cellular structures. The aim has been to get information (a) on the cellular elements involved in the early stages of the transducer process, and (b) on the kind of mechanical distortion which is effective in stimulating these structures. The study of these questions in hair-plate receptors or similar sensilla may be particularly relevant to general transducer physiology because of the special construction of these receptors: The stimulating effect on the nerve cell appears to be restricted to a small region; in this region structural specializations can be observed; such specializations may be related to the question of which cellular elements constitute the first stages of the mechanical sensory..
    • …
    corecore