63 research outputs found

    Greenhouse gas abatement on southern Australian grains farms: B iophysical potential and financial impacts

    Get PDF
    The agricultural sector generates a substantial proportion of global greenhouse gas (GHG) emissions through emissions of carbon dioxide (CO2) and nitrous oxide (N2O). Changes to agricultural practices can provide GHG abatement by maintaining or increasing soil organic carbon (SOC) stored in soils or vegetation, or by decreasing N2O emissions. However, it can be difficult to identify practices that achieve net abatement because practices that increase SOC stocks may also increase N2O emissions from the soil. This study simulated the net on-farm GHG abatement and gross margins for a range of management scenarios on two grain farms from the western and southern grain growing regions of Australia using the Agricultural Production Systems sIMulator (APSIM) model. The soils and practices selected for the study were typical of these regions. Increased cropping intensity consistently provided emissions reductions for all site-soil combinations. The practice of replacing uncropped or unmanaged pasture fallows with a winter legume crop was the only one of nine scenarios to decrease GHG emissions and increase gross margins relative to baseline practice at both locations over the 100-year simulation period. The greatest abatement was obtained by combining this practice with an additional summer legume crop grown for a short period as green manure. However, adding the summer legume decreased farm gross margins because the summer crop used soil moisture otherwise available to the following cash crop, thus reducing yield and revenue. Annual N2O emissions from the soil were an order of magnitude lower from sandy-well-drained soils at the Western Australian location (Dalwallinu) than at the other location (Wimmera) with clay soil, highlighting the importance of interactions between climate and soil properties in determining appropriate GHG abatement practices. Thus, greatest abatement at Dalwallinu was obtained from maintaining or increasing SOC, but managing both N2O emissions and SOC storage were important for providing abatement at Wimmera

    Mitochondrial haplotypes reveal low diversity and restricted connectivity of the critically endangered batoid population in a Marine Protected Area

    Get PDF
    Stability and long-term persistence of a species rely heavily on its genetic diversity, which is closely allied to its capacity for adaptation. In threatened species, population connectivity can play a major role in maintaining that diversity, and genetic assessments of their populations can be crucial for the design of effective spatial conservation management. Not only is it worth evaluating the amount of diversity in a candidate population for protection, but the magnitude of outgoing gene flow can provide insight into its potential to replenish others via emigrants. The critically endangered flapper skate Dipturus intermedius receives protection in the Loch Sunart to the Sound of Jura Marine Protected Area (MPA) in Scotland. However, there is insufficient knowledge of genetic diversity and connectivity across its range. Recent tagging studies in the MPA suggest the presence of animals with high levels of site fidelity and residency, as well as transient individuals, raising concerns of limited connectivity to populations beyond the MPA. In this study, a newly developed mitochondrial haplotype marker allowed use of DNA sourced from fin clips, mucus and egg cases to investigate population structure and mitochondrial variability across several sites around the British Isles, including the MPA. Unfortunately, results characterized the MPA as having particularly low haplotype diversity and significant population differentiation from other sample sites. More than a quarter of its individuals carry a haplotype rarely observed elsewhere, leaving outgoing gene flow questionable. The MPA appears unlikely to sustain the species{\textquoteright} existing mtDNA genetic diversity or act as an effective source population

    Modelling nitrogen leaching : are we getting the right answer for the right reason?

    Get PDF
    The complexities and challenges in quantifying N leaching have led to development of a range of measurement and modelling techniques, but none are widely applied. Observations that N moves more slowly than water through the soil profile has resulted in different approaches being used to simulate impeded N movement in crop models: (i) by accounting for nitrate NO−3 adsorption to the soil, (ii) by considering incomplete mixing between resident and draining soil water fractions or (iii) a combination of both.We compare and discuss strengths and weaknesses of these approaches. Our inability to directly measure model parameters (especially with regards to simulating N dynamics), and the risk of compensating errors during model testing and calibration, often results in low confidence in simulated N leaching. We caution that our current ability to simulate N leaching is in most cases not yet well enough developed for reliable and accurate predictions. We recommend a more strategic approach involving better linking measurement and modelling to improve understanding of the critical soil processes that control N leaching as one way of further improving our understanding and quantification of N leaching.http://www.elsevier.com/locate/agwathb201

    Soil Organic Carbon and Nitrogen Feedbacks on Crop Yields under Climate Change

    Get PDF
    Articles in A&EL are published under the CC-BY NC ND (non-commercial; no derivatives) license (https://creativecommons.org/licenses/by-nc-nd/2.0/). Users are free to copy and redistribute the material in any medium or format. Any further publication of the article will require proper attribution; no derivative works may be made from this article; and the article may not be used for any commercial gain (https://creativecommons.org/licenses/by-nc-nd/2.0/). The author is given explicit permission to publish the final article in her/his institutional repository. There is an option for the CC-BY license if required by an author's institution.Peer reviewedPublisher PD

    Number needed to treat with ursodeoxycholic acid therapy to prevent liver transplantation or death in primary biliary cholangitis

    Get PDF
    Objective: The clinical benefit of ursodeoxycholic acid (UDCA) in primary biliary cholangitis (PBC) has never been reported in absolute measures. The aim of this study was to assess the number needed to treat (NNT) with UDCA to prevent liver transplantation (LT) or death among patients with PBC. Methods: The NNT was calculated based on the untreated LT-free survival and HR of UDCA with respect to LT or death as derived from inverse probability of treatment weighting-adjusted Cox proportional hazard analyses within the Global PBC Study Group database. Results: We included 3902 patients with a median follow-up of 7.8 (4.1-12.1) years. The overall HR of UDCA was 0.46 (95% CI 0.40 to 0.52) and the 5-year LT-free survival without UDCA was 81% (95% CI 79 to 82). The NNT to prevent one LT or death within 5 years (NNT5y) was 11 (95% CI 9 to 13). Although the HR of UDCA was similar for patients with and without cirrhosis (0.33 vs 0.31), the NNT5y was 4 (95% CI 3 to 5) and 20 (95% CI 14 to 34), respectively. Among patients with low alkaline phosphatase (ALP) (≤2× the upper limit of normal (ULN)), intermediate ALP (2-4× ULN) and high ALP (>4× ULN), the NNT5y to prevent one LT or death was 26 (95% CI 15 to 70), 11 (95% CI 8 to 17) and 5 (95% CI 4 to 8), respectively. Conclusion: The absolute clinical efficacy of UDCA with respect to LT or death varied with baseline prognostic characteristics, but was high throughout. These findings strongly emphasise the incentive to promptly initiate UDCA treatment in all patients with PBC and may improve patient compliance
    corecore