17 research outputs found

    Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1

    Get PDF
    Smits THM, Rezzonico F, Kamber T, et al. Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1. PLoS ONE. 2011;6(7): e22247.Background: Pantoea vagans is a commercialized biological control agent used against the pome fruit bacterial disease fire blight, caused by Erwinia amylovora. Compared to other biocontrol agents, relatively little is currently known regarding Pantoea genetics. Better understanding of antagonist mechanisms of action and ecological fitness is critical to improving efficacy. Principal Findings: Genome analysis indicated two major factors contribute to biocontrol activity: competition for limiting substrates and antibacterial metabolite production. Pathways for utilization of a broad diversity of sugars and acquisition of iron were identified. Metabolism of sorbitol by P. vagans C9-1 may be a major metabolic feature in biocontrol of fire blight. Biosynthetic genes for the antibacterial peptide pantocin A were found on a chromosomal 28-kb genomic island, and for dapdiamide E on the plasmid pPag2. There was no evidence of potential virulence factors that could enable an animal or phytopathogenic lifestyle and no indication of any genetic-based biosafety risk in the antagonist. Conclusions: Identifying key determinants contributing to disease suppression allows the development of procedures to follow their expression in planta and the genome sequence contributes to rationale risk assessment regarding the use of the biocontrol strain in agricultural systems

    Association and linkage of leprosy phenotypes with HLA class II and tumour necrosis factor genes

    No full text
    Previous analyses indicate major gene control of susceptibility to leprosy per se and the HLA class II region has been implicated in determining susceptibility and control of clinical phenotype. Segregation analysis using data from 76 Brazilian leprosy multi-case pedigrees (1166 individuals) supported a two locus model as the best fit: a recessive major gene and a recessive modifier gene(s) (single locus vs two locus model, P = 0.0007). Combined segregation and linkage analysis to the major locus, showed strong linkage to HLA class II (HLA-DQB1 P = 0.000002, HLA-DQA1 P = 0.000002, HLA-DRB1 P = 0.0000003) and tumour necrosis factor genes (TNF P = 0.00002, LTA P = 0.003). Extended transmission disequilibrium testing, using multiple affected family members, demonstrated that the common allele TNF*1 of the -308 promoter region polymorphism showed linkage and/or association with disease per se, at a high level of significance (P < 0.0001). Two locus transmission disequilibrium testing suggested susceptibility (TNF*1/LTA*2) and protective (TNF*2/LTA*2) haplotypes in the class iii region. Taken together the segregation and HLA analyses suggest the possibility of more than one susceptibility locus in the MHC

    Biogeography of Parasitic Nematode Communities in the Galápagos Giant Tortoise: Implications for Conservation Management

    Get PDF
    The Galápagos giant tortoise is an icon of the unique, endemic biodiversity of Galápagos, but little is known of its parasitic fauna. We assessed the diversity of parasitic nematode communities and their spatial distributions within four wild tortoise populations comprising three species across three Galápagos islands, and consider their implication for Galápagos tortoise conservation programmes. Coprological examinations revealed nematode eggs to be common, with more than 80% of tortoises infected within each wild population. Faecal samples from tortoises within captive breeding centres on Santa Cruz, Isabela and San Cristobal islands also were examined. Five different nematode egg types were identified: oxyuroid, ascarid, trichurid and two types of strongyle. Sequencing of the 18S small-subunit ribosomal RNA gene from adult nematodes passed with faeces identified novel sequences indicative of rhabditid and ascaridid species. In the wild, the composition of nematode communities varied according to tortoise species, which co-varied with island, but nematode diversity and abundance were reduced or altered in captive-reared animals. Evolutionary and ecological factors are likely responsible for the variation in nematode distributions in the wild. This possible species/island-parasite co-evolution has not been considered previously for Galápagos tortoises. We recommend that conservation efforts, such as the current Galá-pagos tortoise captive breeding/rearing and release programme, be managed with respect to parasite biogeography and host-parasite co-evolutionary processes in addition to the bio-geography of the host
    corecore