2,368 research outputs found
Ferromagnetism in Fe-substituted spinel semiconductor ZnGaO
Motivated by the recent experimental observation of long range ferromagnetic
order at a relatively high temperature of 200K in the Fe-doped ZnGaO
semiconducting spinel, we propose a possible mechanism for the observed
ferromagnetism in this system. We show, supported by band structure
calculations, how a model similar to the double exchange model can be written
down for this system and calculate the ground state phase diagram for the two
cases where Fe is doped either at the tetrahedral position or at the octahedral
position. We find that in both cases such a model can account for a stable
ferromagnetic phase in a wide range of parameter space. We also argue that in
the limit of high Fe concentration at the tetrahedral positions a
description in terms of a two band model is essential. The two orbitals
and the hopping between them play a crucial role in stabilizing the
ferromagnetic phase in this limit. The case when Fe is doped simultaneously at
both the tetrahedral and the octahedral position is also discussed.Comment: 10 pages, 9 figures, added text, J. Phys. Cond. Mat. (to appear
Protostars and Outflows in the NGC7538 - IRS9 Cloud Core
New high resolution observations of HCO+ J=1-0, H13CN J=1-0, SO 2,2 - 1,1,
and continuum with BIMA at 3.4 mm show that the NGC7538 - IRS9 cloud core is a
site of active ongoing star formation. Our observations reveal at least three
young bipolar molecular outflows, all ~ 10,000 -- 20,000 years old. IRS9 drives
a bipolar, extreme high velocity outflow observed nearly pole on. South of IRS9
we find a cold, protostellar condensation with a size of ~ 14" x 6" with a mass
> 250 Msun. This is the center of one of the outflows and shows deep,
red-shifted self absorption in HCO+, suggesting that there is a protostar
embedded in the core, still in a phase of active accretion. This source is not
detected in the far infrared, suggesting that the luminosity < 10^4 Lsun; yet
the mass of the outflow is ~ 60 Msun. The red-shifted HCO+ self-absorption
profiles observed toward the southern protostar and IRS9 predict accretion
rates of a few times 10^-4 to 10^-3 Msun/yr. Deep VLA continuum observations at
3.6 cm show that IRS9 coincides with a faint thermal VLA source, but no other
young star in the IRS9 region has any detectable free-free emission at a level
of ~ 60 microJy at 3.6 cm. The HCO+ abundance is significantly enhanced in the
hot IRS9 outflow. A direct comparison of mass estimates from HCO+ and CO for
the well-characterized red-shifted IRS9 outflow predicts an HCO+ enhancement of
more than a factor of 30, or [HCO+/H2] >= 6 10^-8.Comment: 40 pages, 3 tables and 10 figures included; to appear in Ap
In-plane polarized collective modes in detwinned YBaCuO observed by spectral ellipsometry
The in-plane dielectric response of detwinned YBaCuO has
been studied by far-infared ellipsometry. A surprisingly lare number of
in-plane polarized modes are observed. Some of them correspond to pure phonon
modes. Others posses a large electronic contribution which strongly increases
in the superconducting state. The free carrier response and the collective
modes exhibit a pronounced a-b anisotropy. We discuss our results in terms of a
CDW state in the 1-d CuO chains and induced charge density fluctuations within
the 2-d CuO planes
Mineral chemistry of igneous melanite garnets from analcite-bearing volcanic rocks, Alberta, Canada
The mineral chemistry of melanite garnets from the Crowsnest volcanic rocks of SW Alberta, Canada, has been investigated by using electron microprobe scans, quantitative analyses and multivariate statistical analysis. The garnets occur with aegirine-augite, sanidine, analcite and rare plagioclase as phenocrysts in trachyte and phonolite flows, agglomerates and tuffs. Wavelength dispersive microprobe scans reveal complex zonation patterns, both normal and oscillatory. The results of fifty quantitative analyses were subjected to R-mode factor analysis to delineate the chemical exchanges producing the zonation. The chemical zonation of the garnets may be attributed to four independent binary exchanges; Al-Fe3+, Si-Ti, Ca-Mn and Mg-Fe2+. The stoichiometry of these garnets, based on microprobe and wet chemical Fe analyses, combined with the strongly antithetic behavior of Si and Ti lead us to infer that the Ti in these garnets is dominantly tetravalent. It is clear from this study that quantitative modelling of the processes of crystal growth and zonation of melanite garnets in alkaline, undersaturated igneous rocks should be aimed at simulating the four chemical exchanges listed above
Vacuum Structures in Hamiltonian Light-Front Dynamics
Hamiltonian light-front dynamics of quantum fields may provide a useful
approach to systematic non-perturbative approximations to quantum field
theories. We investigate inequivalent Hilbert-space representations of the
light-front field algebra in which the stability group of the light-front is
implemented by unitary transformations. The Hilbert space representation of
states is generated by the operator algebra from the vacuum state. There is a
large class of vacuum states besides the Fock vacuum which meet all the
invariance requirements. The light-front Hamiltonian must annihilate the vacuum
and have a positive spectrum. We exhibit relations of the Hamiltonian to the
nontrivial vacuum structure.Comment: 16 pages, report \# ANL-PHY-7524-TH-93, (Latex
Transport properties of strongly correlated metals:a dynamical mean-field approach
The temperature dependence of the transport properties of the metallic phase
of a frustrated Hubbard model on the hypercubic lattice at half-filling are
calculated. Dynamical mean-field theory, which maps the Hubbard model onto a
single impurity Anderson model that is solved self-consistently, and becomes
exact in the limit of large dimensionality, is used. As the temperature
increases there is a smooth crossover from coherent Fermi liquid excitations at
low temperatures to incoherent excitations at high temperatures. This crossover
leads to a non-monotonic temperature dependence for the resistance,
thermopower, and Hall coefficient, unlike in conventional metals. The
resistance smoothly increases from a quadratic temperature dependence at low
temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar
a/e^2 (where "a" is a lattice constant) associated with mean-free paths less
than a lattice constant. Further signatures of the thermal destruction of
quasiparticle excitations are a peak in the thermopower and the absence of a
Drude peak in the optical conductivity. The results presented here are relevant
to a wide range of strongly correlated metals, including transition metal
oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure
Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach
We consider the problem of soft gluon resummation for gauge theory amplitudes
and cross sections, at next-to-eikonal order, using a Feynman diagram approach.
At the amplitude level, we prove exponentiation for the set of factorizable
contributions, and construct effective Feynman rules which can be used to
compute next-to-eikonal emissions directly in the logarithm of the amplitude,
finding agreement with earlier results obtained using path-integral methods.
For cross sections, we also consider sub-eikonal corrections to the phase space
for multiple soft-gluon emissions, which contribute to next-to-eikonal
logarithms. To clarify the discussion, we examine a class of log(1 - x) terms
in the Drell-Yan cross-section up to two loops. Our results are the first steps
towards a systematic generalization of threshold resummations to
next-to-leading power in the threshold expansion.Comment: 66 pages, 19 figure
Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations
We reconsider the conceptual foundations of the renormalization-group (RG)
formalism, and prove some rigorous theorems on the regularity properties and
possible pathologies of the RG map. Regarding regularity, we show that the RG
map, defined on a suitable space of interactions (= formal Hamiltonians), is
always single-valued and Lipschitz continuous on its domain of definition. This
rules out a recently proposed scenario for the RG description of first-order
phase transitions. On the pathological side, we make rigorous some arguments of
Griffiths, Pearce and Israel, and prove in several cases that the renormalized
measure is not a Gibbs measure for any reasonable interaction. This means that
the RG map is ill-defined, and that the conventional RG description of
first-order phase transitions is not universally valid. For decimation or
Kadanoff transformations applied to the Ising model in dimension ,
these pathologies occur in a full neighborhood of the low-temperature part of the first-order
phase-transition surface. For block-averaging transformations applied to the
Ising model in dimension , the pathologies occur at low temperatures
for arbitrary magnetic-field strength. Pathologies may also occur in the
critical region for Ising models in dimension . We discuss in detail
the distinction between Gibbsian and non-Gibbsian measures, and give a rather
complete catalogue of the known examples. Finally, we discuss the heuristic and
numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also
ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation
Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of
endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed
- …
