820 research outputs found

    Kinetic equation for gluons at the early stage

    Full text link
    We derive the kinetic equation for pure gluon QCD plasma in a general way, applying the background field method. We show that the quantum kinetic equation contains a term as in the classical case, that describes a color charge precession of partons moving in the gauge field. We emphasize that this new term is necessary for the gauge covariance of the resulting equation.Comment: 6 pages, no figure, to appear in the proceedings of the 6th international conference on strange quarks in matter, Frankfurt, Germany, 25-29 september 200

    Mean Field Dynamics in Non-Abelian Plasmas from Classical Transport Theory

    Get PDF
    Based on classical transport theory, we present a general set of covariant equations describing the dynamics of mean fields and their statistical fluctuations in a non-Abelian plasma in or out-of-equilibrium. A procedure to obtain the collision integrals for the Boltzmann equation from the microscopic theory is described. As an application, we study a hot non-Abelian plasma close to equilibrium, where the fluctuations are integrated out explicitly. For soft fields, and at logarithmic accuracy, we obtain B\"odeker's effective theory.Comment: 4 pages, revtex, no figures. Typo removed, a reference updated, version as to appear in Phys. Rev. Let

    Second harmonic generation from thin slabs in the discrete dipole approach

    Get PDF
    The nonlinear optical response of thin Si slabs is calculated using a discrete dipole approach. The s-polarized second harmonic response as a function of the angle of incidence appears to be in reasonable agreement with experimental results. The p-polarized SHG shows a high sensitivity for the shape of the polarizability profile

    Relativistic Kinetic Equations for Electromagnetic, Scalar and Pseudoscalar Interactions

    Get PDF
    We derive the kinetic equations for both the covariant and equal-time Wigner functions of Dirac particles with electromagnetic, scalar and pseudoscalar interactions. We emphasize the constraint equations for the spinor components in the equal-time formulation.Comment: 12 pages, no figures, revte

    Comment on ``Strangeness enhancement in p+Ap+A and S+A+A interactions at energies near 200 AA GeV"

    Get PDF
    We argue that the recent analysis of strangeness production in nuclear collisions at 200 AA GeV/cc performed by Topor Pop {\it et al.} \cite{To:95} is flawed. The conclusions are based on an erroneous interpretation of the data and the numerical model results. The term ``strangeness enhancement" is used in a misleading way.Comment: 4 pages REVTEX 3.0, no figures; Comment submitted to Physical Review

    Kinetic Equation for Gluons in the Background Gauge of QCD

    Get PDF
    We derive the quantum kinetic equation for a pure gluon plasma, applying the background field and closed-time-path method. The derivation is more general and transparent than earlier works. A term in the equation is found which, as in the classical case, corresponds to the color charge precession for partons moving in the gauge field.Comment: RevTex 4, 4 pages, no figure, PRL accepted versio

    Equal-Time Hierarchies in Quantum Transport Theory

    Get PDF
    We investigate in the equal-time formalism the derivation and truncation of infinite hierarchies of equations of motion for the energy moments of the covariant Wigner function. From these hierarchies we then extract kinetic equations for the physical distribution functions which are related to low-order energy moments, and show how to determine the higher order moments in terms of these lowest order ones. We apply the general formalism to scalar and spinor QED with classical background fields and compare with the results derived from the three-dimensional Wigner transformation method.Comment: 44 pages, no figure

    Entropy Production in Relativistic Hydrodynamics

    Get PDF
    The entropy production occurring in relativistic hydrodynamical systems such as the quark-gluon plasma (QGP) formed in high-energy nuclear collisions is explored. We study mechanisms which change the composition of the fluid, i.e. particle production and/or chemical reactions, along with chemo- and thermo-diffusion. These effects complement the conventional dissipative effects of shear viscosity, bulk viscosity, and heat conductivity.Comment: 15 pages; LaTex. Accepted for publication in Physics Letters B. - Two typos corrected and one reference adde

    Collective Modes in Neutrino `Beam' Electron-Positron Plasma Interactions

    Full text link
    We derive semiclassical neutrino-electron transport equations in the collisionless (Vlasov) limit from the coupled Dirac equations, incorporating the charged and neutral weak current-current as well as electromagnetic interactions. A corresponding linear response theory is derived. In particular, we calculate the response functions for a variety of beam-plasma geometries, which are of interest in a supernova scenario. We apply this to the study of plasmons and to a new class of collective {\it pharon} resonance modes, which are characterized by ω<q\omega < q. We find that the growth rates of the unstable modes correspond to a strongly temperature (Tν2Te3\propto T_\nu^2T_e^3) and linearly momentum dependent e-folding length of about 101010^{10} km under typical conditions for Type II supernovae. This appears to rule out such long-wavelength collective modes as an efficient means of depositing neutrino energy into the plasma sphere.Comment: 27 pages; LaTex. Replaced by published version. - Appendix about neutrino Wigner functions added and main text correspondingly revised. Conclusions unchange

    Observing Quark-Gluon Plasma with Strange Hadrons

    Full text link
    We review the methods and results obtained in an analysis of the experimental heavy ion collision research program at nuclear beam energy of 160-200A GeV. We study strange, and more generally, hadronic particle production experimental data. We discuss present expectations concerning how these observables will perform at other collision energies. We also present the dynamical theory of strangeness production and apply it to show that it agrees with available experimental results. We describe strange hadron production from the baryon-poor quark-gluon phase formed at much higher reaction energies, where the abundance of strange baryons and antibaryons exceeds that of nonstrange baryons and antibaryons.Comment: 39 journal pages (155kb text), 8 postscript figures, 8 table
    corecore