59 research outputs found

    A stopped Delta-Matter Source in Heavy Ion Collisions at 10 GeV/n

    Full text link
    We predict the formation of highly dense baryon-rich resonance matter in Au+Au collisions at AGS energies. The final pion yields show observable signs for resonance matter. The Delta(1232) resonance is predicted to be the dominant source for pions of small transverse momenta. Rescattering effects -- consecutive excitation and deexcitation of Deltas -- lead to a long apparent lifetime (> 10 fm/c) and rather large volumina (several 100 fm^3) of the Delta-matter state. Heavier baryon resonances prove to be crucial for reaction dynamics and particle production at AGS.Comment: 17 pages, 5 postscript figures, uses psfig.sty and revtex.st

    Density dependent hadron field theory for hypernuclei

    Get PDF
    The Density Dependent Relativistic Hadron Field (DDRH) theory, previously introduced and applied to isospin nuclei, is extended to hypernuclei by including the octet hyperons. Infinite matter Dirac-Brueckner theory for octet baryons and the derivation of in-medium DDRH baryon-meson vertices is discussed. From the properties of Dirac-Brueckner interactions it is found that hyperon and nucleon self-energies and vertices are related by the ratios of free space coupling constants. This leads to simple scaling laws for the in-medium hyperon and nucleon vertices. The model is applied in relativistic DDRH mean-field calculations to singl$\Lambda nuclei. Free space N-Lambda T-matrix results are used for the scalar vertex. As the only free parameter the hyperon vector vertex scaling factor is adjusted to a selected set of hypernuclear data. Spectroscopic data of single Lambda hypernuclei over the full mass range are well described. The reduced Lambda spin-orbit splitting is reproduced and found to be related closely the medium dependence of scalar and vector interactions.Comment: 38 pages, 9 figure

    Relativistic quantum transport theory of hadronic matter: the coupled nucleon, delta and pion system

    Full text link
    We derive the relativistic quantum transport equation for the pion distribution function based on an effective Lagrangian of the QHD-II model. The closed time-path Green's function technique, the semi-classical, quasi-particle and Born approximation are employed in the derivation. Both the mean field and collision term are derived from the same Lagrangian and presented analytically. The dynamical equation for the pions is consistent with that for the nucleons and deltas which we developed before. Thus, we obtain a relativistic transport model which describes the hadronic matter with NN, Δ\Delta and π\pi degrees of freedom simultaneously. Within this approach, we investigate the medium effects on the pion dispersion relation as well as the pion absorption and pion production channels in cold nuclear matter. In contrast to the results of the non-relativistic model, the pion dispersion relation becomes harder at low momenta and softer at high momenta as compared to the free one, which is mainly caused by the relativistic kinetics. The theoretically predicted free πN→Δ\pi N \to \Delta cross section is in agreement with the experimental data. Medium effects on the πN→Δ\pi N \to \Delta cross section and momentum-dependent Δ\Delta-decay width are shown to be substantial.Comment: 66 pages, Latex, 12 PostScript figures included; replaced by the revised version, to appear in Phys. Rev.

    Venture capital-backed firms, unavoidable value-destroying trade sales, and fair value protections

    Get PDF
    This paper investigates the implications of the fair value protections contemplated by the standard corporate contract (i.e., the standard contract form for which corporate law provides) for the entrepreneur–venture capitalist relationship, focusing, in particular, on unavoidable value-destroying trade sales. First, it demonstrates that the typical entrepreneur–venture capitalist contract does institutionalize the venture capitalist’s liquidity needs, allowing, under some circumstances, for counterintuitive instances of contractually-compliant value destruction. Unavoidable value-destroying trade sales are the most tangible example. Next, it argues that fair value protections can prevent the entrepreneur and venture capitalist from allocating the value that these transactions generate as they would want. Then, it shows that the reality of venture capital-backed firms calls for a process of adaptation of the standard corporate contract that has one major step in the deactivation or re-shaping of fair value protections. Finally, it argues that a standard corporate contract aiming to promote social welfare through venture capital should feature flexible fair value protections.info:eu-repo/semantics/publishedVersio

    Radioactive Holmium Acetylacetonate Microspheres for Interstitial Microbrachytherapy: An In Vitro and In Vivo Stability Study

    Get PDF
    Purpose The clinical application of holmium acetylacetonate microspheres (HoAcAcMS) for the intratumoral radionuclide treatment of solid malignancies requires a thorough understanding of their stability. Therefore, an in vitro and an in vivo stability study with HoAcAcMS was conducted. Methods HoAcAcMS, before and after neutron irradiation, were incubated in a phosphate buffer at 37°C for 6 months. The in vitro release of holmium in this buffer after 6 months was 0.5%. Elemental analysis, scanning electron microscopy, infrared spectroscopy and time of flight secondary ion mass spectrometry were performed on the HoAcAcMS. Results After 4 days in buffer the acetylacetonate ligands were replaced by phosphate, without altering the particle size and surface morphology. HoAcAcMS before and after neutron irradiation were administered intratumorally in VX2 tumor-bearing rabbits. No holmium was detected in the faeces, urine, femur and blood. Histological examination of the tumor revealed clusters of intact microspheres amidst necrotic tissue after 30 days. Conclusion HoAcAcMS are stable both in vitro and in vivo and are suitable for intratumoral radionuclide treatment.Radiation, Radionuclides and ReactorsApplied Science

    On Landau damping

    Get PDF
    Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of nonlinear echoes; sharp scattering estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the nonlinear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications.Comment: News: (1) the main result now covers Coulomb and Newton potentials, and (2) some classes of Gevrey data; (3) as a corollary this implies new results of stability of homogeneous nonmonotone equilibria for the gravitational Vlasov-Poisson equatio

    Relativistic transport theory of N, \Delta and N^{*}(1440) interacting through σ\sigma, ω\omega and π\pi mesons

    Full text link
    A self-consistent relativistic integral-differential equation of the Boltzmann-Uehling-Uhlenbeck-type for the N∗N^{*}(1440) resonance is developed based on an effective Lagrangian of baryons interacting through mesons. The closed time-path Green's function technique and semi-classical, quasi-particle and Born approximations are employed in the derivation. The non-equilibrium RBUU-type equation for the N∗N^{*}(1440) is consistent with that of nucleon's and delta's which we derived before. Thus, we obtain a set of coupled equations for the NN, Δ\Delta and N∗N^{*}(1440) distribution functions. All the N∗N^{*}(1440)-relevant in-medium two-body scattering cross sections within the NN, Δ\Delta and N∗N^{*}(1440) system are derived from the same effective Lagrangian in addition to the mean field and presented analytically, which can be directly used in the study of relativistic heavy-ion collisions. The theoretical prediction of the free pp→pp∗(1440)pp \to pp^{*}(1440) cross section is in good agreement with the experimental data. We calculate the in-medium N+N→N+N∗N + N \to N + N^{*}, N∗+N→N+NN^{*} + N \to N + N and N∗+N→N∗+NN^{*} + N \to N^{*} + N cross sections in cold nuclear matter up to twice the nuclear matter density. The influence of different choices of the N∗N∗N^{*}N^{*} coupling strengths, which can not be obtained through fitting certain experimental data, are discussed. The results show that the density dependence of predicted in-medium cross sections are sensitive to the N∗N∗N^{*}N^{*} coupling strengths used. An evident density dependence will appear when a large scalar coupling strength of gN∗N∗σg_{N^{*}N^{*}}^{\sigma} is assumed.Comment: 64 pages, Latex, 13 PostScript figures include
    • 

    corecore