101 research outputs found

    Functional imaging of mucociliary phenomena: High-speed digital reflection contrast microscopy

    Get PDF
    We present a technique for the investigation of mucociliary phenomena on trachea explants under conditions resembling those in the respiratory tract. Using an enhanced reflection contrast, we detect simultaneously the wave-like modulation of the mucus surface by the underlying ciliary activity and the transport of particles embedded in the mucus layer. Digital recordings taken at a speed of 500 frames per second are analyzed by a set of refined data processing algorithms. The simultaneously extracted data include not only ciliary beat frequency and its surface distribution, but also space-time structure of the mucociliary wave field, wave velocity and mucus transport velocity. Furthermore, we propose the analysis of the space and time evolution of the phase of the mucociliary oscillations to be the most direct way to visualize the coordination of the cilia. In particular, this analysis indicates that the synchronization is restricted to patches with varying directions of wave propagation, but the transport direction is strongly correlated with the mean direction of waves. The capabilities of the technique and of the data-processing algorithms are documented by characteristic data obtained from mammalian and avine trachea

    The New Generation Planetary Population Synthesis (NGPPS). V. Predetermination of planet types in global core accretion models

    Get PDF
    Context. State-of-the-art planet formation models are now capable of accounting for the full spectrum of known planet types. This comes at the cost of an increasing complexity of the models, which calls into question whether established links between their initial conditions and the calculated planetary observables are preserved. Aims. In this paper, we take a data-driven approach to investigate the relations between clusters of synthetic planets with similar properties and their formation history. Methods. We trained a Gaussian mixture model on typical exoplanet observables computed by a global model of planet formation to identify clusters of similar planets. We then traced back the formation histories of the planets associated with them and pinpointed their differences. Using the cluster affiliation as labels, we trained a random forest classifier to predict planet species from properties of the originating protoplanetary disk. Results. Without presupposing any planet types, we identified four distinct classes in our synthetic population. They roughly correspond to the observed populations of (sub-)Neptunes, giant planets, and (super-)Earths, plus an additional unobserved class we denote as “icy cores”. These groups emerge already within the first 0.1 Myr of the formation phase and are predicted from disk properties with an overall accuracy of >90%. The most reliable predictors are the initial orbital distance of planetary nuclei and the total planetesimal mass available. Giant planets form only in a particular region of this parameter space that is in agreement with purely analytical predictions. Including N-body interactions between the planets decreases the predictability, especially for sub-Neptunes that frequently undergo giant collisions and turn into super-Earths. Conclusions. The processes covered by current core accretion models of planet formation are largely predictable and reproduce the known demographic features in the exoplanet population. The impact of gravitational interactions highlights the need for N-body integrators for realistic predictions of systems of low-mass planets

    Impact of facial conformation on canine health: Brachycephalic Obstructive Airway Syndrome

    Get PDF
    The domestic dog may be the most morphologically diverse terrestrial mammalian species known to man; pedigree dogs are artificially selected for extreme aesthetics dictated by formal Breed Standards, and breed-related disorders linked to conformation are ubiquitous and diverse. Brachycephaly–foreshortening of the facial skeleton–is a discrete mutation that has been selected for in many popular dog breeds e.g. the Bulldog, Pug, and French Bulldog. A chronic, debilitating respiratory syndrome, whereby soft tissue blocks the airways, predominantly affects dogs with this conformation, and thus is labelled Brachycephalic Obstructive Airway Syndrome (BOAS). Despite the name of the syndrome, scientific evidence quantitatively linking brachycephaly with BOAS is lacking, but it could aid efforts to select for healthier conformations. Here we show, in (1) an exploratory study of 700 dogs of diverse breeds and conformations, and (2) a confirmatory study of 154 brachycephalic dogs, that BOAS risk increases sharply in a non-linear manner as relative muzzle length shortens. BOAS only occurred in dogs whose muzzles comprised less than half their cranial lengths. Thicker neck girths also increased BOAS risk in both populations: a risk factor for human sleep apnoea and not previously realised in dogs; and obesity was found to further increase BOAS risk. This study provides evidence that breeding for brachycephaly leads to an increased risk of BOAS in dogs, with risk increasing as the morphology becomes more exaggerated. As such, dog breeders and buyers should be aware of this risk when selecting dogs, and breeding organisations should actively discourage exaggeration of this high-risk conformation in breed standards and the show ring

    Breakpoint Associated with a novel 2.3 Mb deletion in the VCFS region of 22q11 and the role of Alu (SINE) in recurring microdeletions

    Get PDF
    BACKGROUND: Chromosome 22q11.2 region is highly susceptible to rearrangement, specifically deletions that give rise to a variety of genomic disorders including velocardiofacial or DiGeorge syndrome. Individuals with this 22q11 microdeletion syndrome are at a greatly increased risk to develop schizophrenia. METHODS: Genotype analysis was carried out on the DNA from a patient with the 22q11 microdeletion using genetic markers and custom primer sets to define the deletion. Bioinformatic analysis was performed for molecular characterization of the deletion breakpoint sequences in this patient. RESULTS: This 22q11 deletion patient was established to have a novel 2.3 Mb deletion with a proximal breakpoint located between genetic markers RH48663 and RH48348 and a distal breakpoint between markers D22S1138 and SHGC-145314. Molecular characterization of the sequences at the breakpoints revealed a 270 bp shared sequence of the breakpoint regions (SSBR) common to both ends that share >90% sequence similarity to each other and also to short interspersed nuclear elements/Alu elements. CONCLUSION: This Alu sequence like SSBR is commonly in the proximity of all known deletion breakpoints of 22q11 region and also in the low copy repeat regions (LCRs). This sequence may represent a preferred sequence in the breakpoint regions or LCRs for intra-chromosomal homologous recombination mechanisms resulting in common 22q11 deletion

    Clusters of galaxies : observational properties of the diffuse radio emission

    Get PDF
    Clusters of galaxies, as the largest virialized systems in the Universe, are ideal laboratories to study the formation and evolution of cosmic structures...(abridged)... Most of the detailed knowledge of galaxy clusters has been obtained in recent years from the study of ICM through X-ray Astronomy. At the same time, radio observations have proved that the ICM is mixed with non-thermal components, i.e. highly relativistic particles and large-scale magnetic fields, detected through their synchrotron emission. The knowledge of the properties of these non-thermal ICM components has increased significantly, owing to sensitive radio images and to the development of theoretical models. Diffuse synchrotron radio emission in the central and peripheral cluster regions has been found in many clusters. Moreover large-scale magnetic fields appear to be present in all galaxy clusters, as derived from Rotation Measure (RM) studies. Non-thermal components are linked to the cluster X-ray properties, and to the cluster evolutionary stage, and are crucial for a comprehensive physical description of the intracluster medium. They play an important role in the cluster formation and evolution. We review here the observational properties of diffuse non-thermal sources detected in galaxy clusters: halos, relics and mini-halos. We discuss their classification and properties. We report published results up to date and obtain and discuss statistical properties. We present the properties of large-scale magnetic fields in clusters and in even larger structures: filaments connecting galaxy clusters. We summarize the current models of the origin of these cluster components, and outline the improvements that are expected in this area from future developments thanks to the new generation of radio telescopes.Comment: Accepted for the publication in The Astronomy and Astrophysics Review. 58 pages, 26 figure

    The CARMENES search for exoplanets around M dwarfs, Wolf 1069 b: Earth-mass planet in the habitable zone of a nearby, very low-mass star

    Full text link
    We present the discovery of an Earth-mass planet (Mbsini=1.26±0.21MM_b\sin i = 1.26\pm0.21M_\oplus) on a 15.6d orbit of a relatively nearby (dd\sim9.6pc) and low-mass (0.167±0.011M0.167\pm0.011 M_\odot) M5.0V star, Wolf 1069. Sitting at a separation of 0.0672±0.00140.0672\pm0.0014au away from the host star puts Wolf 1069b in the habitable zone (HZ), receiving an incident flux of S=0.652±0.029SS=0.652\pm0.029S_\oplus. The planetary signal was detected using telluric-corrected radial-velocity (RV) data from the CARMENES spectrograph, amounting to a total of 262 spectroscopic observations covering almost four years. There are additional long-period signals in the RVs, one of which we attribute to the stellar rotation period. This is possible thanks to our photometric analysis including new, well-sampled monitoring campaigns undergone with the OSN and TJO facilities that supplement archival photometry (i.e., from MEarth and SuperWASP), and this yielded an updated rotational period range of Prot=150170P_{rot}=150-170d, with a likely value at 169.33.6+3.7169.3^{+3.7}_{-3.6}d. The stellar activity indicators provided by the CARMENES spectra likewise demonstrate evidence for the slow rotation period, though not as accurately due to possible factors such as signal aliasing or spot evolution. Our detectability limits indicate that additional planets more massive than one Earth mass with orbital periods of less than 10 days can be ruled out, suggesting that perhaps Wolf 1069 b had a violent formation history. This planet is also the 6th closest Earth-mass planet situated in the conservative HZ, after Proxima Centauri b, GJ 1061d, Teegarden's Star c, and GJ 1002 b and c. Despite not transiting, Wolf 1069b is nonetheless a very promising target for future three-dimensional climate models to investigate various habitability cases as well as for sub-ms1^{-1} RV campaigns to search for potential inner sub-Earth-mass planets in order to test planet formation theories.Comment: 26 pages, 15 figure

    Episodic Memory and Appetite Regulation in Humans

    Get PDF
    Psychological and neurobiological evidence implicates hippocampal-dependent memory processes in the control of hunger and food intake. In humans, these have been revealed in the hyperphagia that is associated with amnesia. However, it remains unclear whether 'memory for recent eating' plays a significant role in neurologically intact humans. In this study we isolated the extent to which memory for a recently consumed meal influences hunger and fullness over a three-hour period. Before lunch, half of our volunteers were shown 300 ml of soup and half were shown 500 ml. Orthogonal to this, half consumed 300 ml and half consumed 500 ml. This process yielded four separate groups (25 volunteers in each). Independent manipulation of the 'actual' and 'perceived' soup portion was achieved using a computer-controlled peristaltic pump. This was designed to either refill or draw soup from a soup bowl in a covert manner. Immediately after lunch, self-reported hunger was influenced by the actual and not the perceived amount of soup consumed. However, two and three hours after meal termination this pattern was reversed - hunger was predicted by the perceived amount and not the actual amount. Participants who thought they had consumed the larger 500-ml portion reported significantly less hunger. This was also associated with an increase in the 'expected satiation' of the soup 24-hours later. For the first time, this manipulation exposes the independent and important contribution of memory processes to satiety. Opportunities exist to capitalise on this finding to reduce energy intake in humans

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    The New Generation Planetary Population Synthesis (NGPPS). III. Warm super-Earths and cold Jupiters: A weak occurrence correlation, but with a strong architecture-composition link

    Get PDF
    Recent observational findings have suggested a positive correlation between the occurrence rates of inner super-Earths and outer giant planets. These results raise the question of whether this trend can be reproduced and explained by planet formation theory. Here, we investigate the properties of inner super-Earths and outer giant planets that form according to a core accretion scenario. We study the mutual relations between these planet species in synthetic planetary systems and compare them to the observed exoplanet population. We invoked the Generation 3 Bern model of planet formation and evolution to simulate 1000 multi-planet systems. We then confronted these synthetic systems with the observed sample, taking into account the detection bias that distorts the observed demographics. The formation of warm super-Earths and cold Jupiters in the same system is enhanced compared to the individual appearances, although it is weaker than what has been proposed through observations. We attribute the discrepancy to warm and dynamically active giant planets that frequently disrupt the inner systems, particularly in high-metallicity environments. In general, a joint occurrence of the two planet types requires intermediate solid reservoirs in the originating protoplanetary disk. Furthermore, we find differences in the volatile content of planets in different system architectures and predict that high-density super-Earths are more likely to host an outer giant. This correlation can be tested observationally.Comment: 29 pages, 28 figures. Accepted for publication in Astronomy & Astrophysic
    corecore