10,656 research outputs found

    Modelling of two-component turbulent mass and heat transfer in air-fed pressurised suits

    Get PDF
    This article has been accepted for publication in the Flow, Turbulence and Combustion journal.In this paper the modelling of an important industrial problem is addressed, which involves the two-component turbulent flow with heat transfer that takes place inside protective clothing. The geometry of the flow boundaries is reconstructed in a CAD system from photogrammetry scan data. The overall model is sufficiently realistic to allow, after validation, design improvements to be tested. Those presented here allow the reduction of hot spots over the workerā€™s body surface and increase thermal comfort.This project is funded by the Engineering and Physical Sciences Research Council and the UK Atomic Energy Authority

    Heat and mass transfer in air-fed pressurised suits

    Get PDF
    Air-fed pressurised suits are used to protect workers against contamination and hazardous environments. The specic application here is the necessity for regular clean-up maintenance within the torus chamber of fusion reactors. The current design of suiting has been developed empirically. It is, therefore, very desirable to formulate a thermofluids model, which will be able to define optimum designs and operating parameters. Two factors indicate that the modelling should be as comprehensive as possible. Firstly, the overall thermofluids problem is three-dimensional and includes mass as well as heat transfer. The fluid field is complex, bounded on one side by the human body and on the other by what may be distensible, porous and multi-layer clothing. In this paper, we report firstly the modelling necessary for the additional mass and heat transport processes. This involves the use of Fick's and Fourier's laws and conjugate heat transfer. The results of an initial validation study are presented. Temperatures at the outlet of the suits were obtained experimentally and compared with those predicted by the overall CFD model. Realistic three-dimensional geometries were used for the suit and human body. Calculations were for turbulent flow with single- and two-component (species) models

    Determination of Chlorinated organic compounds in aqueous matrices

    Get PDF
    Thirteen pure volatile, semi-volatile and non-volatile chlorinated organic compounds of molecular weights ranging from trichloroethylene (MW = 131.39 g mole -Ā¹) to hexachlorobenzene (MW = 284.78 g mole-Ā¹) were determined in aqueous matrices by GC-ECD. After 10% salt addition, different extraction tests were performed using fibres whose adsorbing phase was based on microsphere carbon particles characterized by a constant size. Five experimental parameters were optimized: extraction temperature and time, position of the fibre in the GC injector port, desorption temperature and time. The optimized analytical protocol was employed to determine the efficiency of a real activated carbon adsorption plant to remove organic chlorinated pollutants from an industrial wastewater at ng l-Ā¹ levels

    Sorafenib dose escalation is not uniformly associated with blood pressure elevations in normotensive patients with advanced malignancies.

    Get PDF
    Hypertension after treatment with vascular endothelial growth factor (VEGF) receptor inhibitors is associated with superior treatment outcomes for advanced cancer patients. To determine whether increased sorafenib doses cause incremental increases in blood pressure (BP), we measured 12-h ambulatory BP in 41 normotensive advanced solid tumor patients in a randomized dose-escalation study. After 7 days' treatment (400ā€‰mg b.i.d.), mean diastolic BP (DBP) increased in both study groups. After dose escalation, group A (400ā€‰mg t.i.d.) had marginally significant further increase in 12-h mean DBP (P = 0.053), but group B (600ā€‰mg b.i.d.) did not achieve statistically significant increases (P = 0.25). Within groups, individuals varied in BP response to sorafenib dose escalation, but these differences did not correlate with changes in steady-state plasma sorafenib concentrations. These findings in normotensive patients suggest BP is a complex pharmacodynamic biomarker of VEGF inhibition. Patients have intrinsic differences in sensitivity to sorafenib's BP-elevating effects

    Velocity profile development and friction in compressible micro flows

    Get PDF
    From Poiseuille theory, it is known that incompressible laminar fully-developed flow of a Newtonian fluid in a constant cross-section channel is characterised by steady parabolic velocity profiles after a fully-developed flow condition is attained. In turbulent fully-developed flow the velocity profiles are non-parabolic and become more flat for higher Reynolds numbers. When the incompressible hypothesis does not hold, as in the case of high velocity ideal gas flow, the velocity profile becomes flatter, as if more turbulent, due to the superposition of compressibility and turbulence effects, if applicable. This is typical in microchannel flows, where pressure gradients are high and the gas is rapidly accelerating, eventually up to the sound velocity. As the flow accelerates the effects of compressibility grow stronger and the velocity profile keeps changing shape. The radial velocity component does not zero as in fully-developed flow but reverses after the entrance effects have damped out and grows with the Mach number. A net mass transfer toward the walls is thus generated making the velocity profile more flat. This affects the friction factor which is no longer constant, being proportional to the normal-to-wall velocity gradient, and needs to be evaluated. In the present work, the compressible friction factor is numerically investigated and correlations are proposed based on the velocity profile shape evolution as a function of the Mach number. This, together with other considerations on the velocity profile shape change, is shown to enhance the predictive capability of the Fanno theory for compressible flows
    • ā€¦
    corecore