26 research outputs found

    Abundance estimation of Ixodes ticks (Acari: Ixodidae) on roe deer (Capreolus capreolus)

    Get PDF
    Despite the importance of roe deer as a host for Ixodes ticks in central Europe, estimates of total tick burden on roe deer are not available to date. We aimed at providing (1) estimates of life stage and sex specific (larvae, nymphs, males and females, hereafter referred to as tick life stages) total Ixodes burden and (2) equations which can be used to predict the total life stage burden by counting the life stage on a selected body area. Within a period of 1Ā½Ā years, we conducted whole body counts of ticks from 80 hunter-killed roe deer originating from a beech dominated forest area in central Germany. Averaged over the entire study period (winter 2007ā€“summer 2009), the mean tick burden per roe deer was 64.5 (SEĀ Ā±Ā 10.6). Nymphs were the most numerous tick life stage per roe deer (23.9Ā Ā±Ā 3.2), followed by females (21.4Ā Ā±Ā 3.5), larvae (10.8Ā Ā±Ā 4.2) and males (8.4Ā Ā±Ā 1.5). The individual tick burden was highly aggregated (kĀ =Ā 0.46); levels of aggregation were highest in larvae (kĀ =Ā 0.08), followed by males (kĀ =Ā 0.40), females (kĀ =Ā 0.49) and nymphs (kĀ =Ā 0.71). To predict total life stage specific burdens based on counts on selected body parts, we provide linear equations. For estimating larvae abundance on the entire roe deer, counts can be restricted to the front legs. Tick counts restricted to the head are sufficient to estimate total nymph burden and counts on the neck are appropriate for estimating adult ticks (females and males). In order to estimate the combined tick burden, tick counts on the head can be used for extrapolation. The presented linear models are highly significant and explain 84.1, 77.3, 90.5, 91.3, and 65.3% (adjusted R2) of the observed variance, respectively. Thus, these models offer a robust basis for rapid tick abundance assessment. This can be useful for studies aiming at estimating effects of abiotic and biotic factors on tick abundance, modelling tick population dynamics, modelling tick-borne pathogen transmission dynamics or assessing the efficacy of acaricides

    Attachment site selection of ticks on roe deer, Capreolus capreolus

    Get PDF
    The spatio-temporal attachment site patterns of ticks feeding on their hosts can be of significance if co-feeding transmission (i.e. from tick to tick without a systemic infection of the host) of pathogens affects the persistence of a given disease. Using tick infestation data on roe deer, we analysed preferred attachment sites and niche width of Ixodes ticks (larvae, nymphs, males, females) and investigated the degree of inter- and intrastadial aggregation. The different development stages showed rather consistent attachment site patterns and relative narrow feeding site niches. Larvae were mostly found on the head and on the front legs of roe deer, nymphs reached highest densities on the head and highest adult densities were found on the neck of roe deer. The tick stages feeding (larvae, nymphs, females) on roe deer showed high degrees of intrastadial spatial aggregation, whereas males did not. Male ticks showed large feeding site overlap with female ticks. Feeding site overlap between larval-female and larval-nymphal ticks did occur especially during the months Mayā€“August on the head and front legs of roe deer and might allow pathogen transmission via co-feeding. Tick density, niche width and niche overlap on roe deer are mainly affected by seasonality, reflecting seasonal activity and abundance patterns of ticks. Since different tick development stages occur spatially and temporally clustered on roe deer, transmission experiments of tick-borne pathogens are urgently needed

    Activity and Habitat Use of Chimpanzees (Pan troglodytes verus) in the Anthropogenic Landscape of Bossou, Guinea, West Africa

    Get PDF
    Many primate populations inhabit anthropogenic landscapes. Understanding their long-term ability to persist in such environments and associated real and perceived risks for both primates and people is essential for effective conservation planning. Primates in forestā€“agricultural mosaics often consume cultivars to supplement their diet, leading to potentially negative encounters with farmers. When crossing roads, primates also face the risk of encounters with people and collision with vehicles. Chimpanzees (Pan troglodytes verus) in Bossou, Guinea, West Africa, face such risks regularly. In this study, we aimed to examine their activity budget across habitat types and the influence of anthropogenic risks associated with cultivated fields, roads, and paths on their foraging behavior in noncultivated habitat. We conducted 6-h morning or afternoon follows daily from April 2012 to March 2013. Chimpanzees preferentially used forest habitat types for traveling and resting and highly disturbed habitat types for socializing. Wild fruit and crop availability influenced seasonal habitat use for foraging. Overall, chimpanzees preferred mature forest for all activities. They showed a significant preference for foraging at >200 m from cultivated fields compared to 0ā€“100 m and 101ā€“200 m, with no effect of habitat type or season, suggesting an influence of associated risk. Nevertheless, the chimpanzees did not actively avoid foraging close to roads and paths. Our study reveals chimpanzee reliance on different habitat types and the influence of human-induced pressures on their activities. Such information is critical for the establishment of effective land use management strategies in anthropogenic landscapes

    The Combined AHP-QFD Approach and its use in Lean Maintenance

    No full text
    Please help populate SUNScholar with the full text of SU research output. Also - should you need this item urgently, please send us the details and we will try to get hold of the full text as quick possible. E-mail to [email protected]. Thank you.IngenieursweseBedryfsingenieurswes

    A Lean Maintenance Supply Chain Framework for Rolling Stock Maintenance: A Case Study

    No full text
    IngenieursweseBedryfsingenieurswesePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Ensemble Convolutional Neural Networks for the Detection of Microscopic Fusarium Oxysporum

    No full text
    The Panama disease has been reported to wipe out banana plantations due to the fungal pathogen known as Fusarium oxysporum f. sp. Cubense Tropical Race 4, or Foc TR4. Currently, there are no proven methods to control the spread of the disease. This study aims to develop an early detection model for Foc TR4 to minimize damages to infected plantations. In line with this, CNN models using the ResNet50 architecture were utilized towards the classification of the presence of Foc TR4 in a given microscopy image of a soil sample. Fungi samples were lab-cultivated, and images were taken using a lab microscope with three distinct microscopy configurations in LPO magnification. The initial results have shown that brightfield and darkfield images are generally more helpful in the automatic classification of fungi. Gradient-weighted Class Activation Mapping (Grad-CAM) was used to validate the decision processes of the individual CNN models. The proposed ensemble model shows promising results that achieved an accuracy of 91.46%. The model is beneficial as a low-cost preliminary test that could be performed on areas that are suspected to be infected with the pathogen given that the exported models can easily be implemented in a mobile system
    corecore