22 research outputs found

    The physiological cost of diazotrophy for Trichodesmium erythraeum IMS101

    Get PDF
    Trichodesmium plays a significant role in the oligotrophic oceans, fixing nitrogen in an area corresponding to half of the Earth’s surface, representing up to 50% of new production in some oligotrophic tropical and subtropical oceans. Whilst Trichodesmium blooms at the surface exhibit a strong dependence on diazotrophy, colonies at depth or at the surface after a mixing event could be utilising additional N-sources. We conducted experiments to establish how acclimation to varying N-sources affects the growth, elemental composition, light absorption coefficient, N2 fixation, PSII electron transport rate and the relationship between net and gross photosynthetic O2 exchange in T. erythraeum IMS101. To do this, cultures were acclimated to growth medium containing NH4+ and NO3- (replete concentrations) or N2 only (diazotrophic control). The light dependencies of O2 evolution and O2 uptake were measured using membrane inlet mass spectrometry (MIMS), while PSII electron transport rates were measured from fluorescence light curves (FLCs). We found that at a saturating light intensity, Trichodesmium growth was ~ 10% and 13% lower when grown on N2 than with NH4+ and NO3-, respectively. Oxygen uptake increased linearly with net photosynthesis across all light intensities ranging from darkness to 1100 μmol photons m-2 s-1. The maximum rates and initial slopes of light response curves for C-specific gross and net photosynthesis and the slope of the relationship between gross and net photosynthesis increased significantly under non-diazotrophic conditions. We attribute these observations to a reduced expenditure of reductant and ATP for nitrogenase activity under non-diazotrophic conditions which allows NADPH and ATP to be re-directed to CO2 fixation and/or biosynthesis. The energy and reductant conserved through utilising additional N-sources could enhance Trichodesmium’s productivity and growth and have major implications for its role in ocean C and N cycles

    A novel membrane inlet-infrared gas analysis (MI-IRGA) system for monitoring of seawater carbonate system

    Get PDF
    Increased atmospheric CO 2 concentrations are driving changes in ocean chemistry at unprecedented rates resulting in ocean acidification, which is predicted to impact the functioning of marine biota, in particular of marine calcifiers. However, the precise understanding of such impacts relies on an analytical system that determines the mechanisms and impact of elevated pCO 2 on the physiology of organisms at scales from species to entire communities. Recent work has highlighted the need within experiments to control all aspects of the carbonate system to resolve the role of different inorganic carbon species on the physiological responses observed across taxa in real-time. Presently however, there are limited options available for continuous quantification of physiological responses, coupled with real-time calculation of the seawater carbonate chemistry system within microcosm environments. Here, we describe and characterise the performance of a novel pCO 2 membrane equilibrium system (the Membrane Inlet Infra-Red Gas Analyser, MI-IRGA) integrated with a continuous pH and oxygen monitoring platform. The system can detect changes in the seawater carbonate chemistry and determine organism physiological responses, while providing the user with real-time control over the microcosm system. We evaluate the systems control, response time and associated error, and demonstrate the flexibility of the system to operate under field conditions and within a laboratory. We use the system to measure physiological parameters (photosynthesis and respiration) for the corals Pocillipora damicornis and Porites cylindrica; in doing so we present a novel dataset examining the interactive role of temperature, light and pCO 2 on the physiology of P. cylindrica

    The multifunctional roles of vegetated strips around and within agricultural fields : A systematic map protocol.

    Get PDF
    Background: Agriculture and agricultural intensification can have significant negative impacts on the environment, including nutrient and pesticide leaching, spreading of pathogens, soil erosion and reduction of ecosystem services provided by terrestrial and aquatic biodiversity. The establishment and management of vegetated strips adjacent to farmed fields (including various field margins, buffer strips and hedgerows) are key mitigation measures for these negative environmental impacts and environmental managers and other stakeholders must often make decisions about how best to design and implement vegetated strips for a variety of different outcomes. However, it may be difficult to obtain relevant, accurate and summarised information on the effects of implementation and management of vegetated strips, even though a vast body of evidence exists on multipurpose vegetated strip interventions within and around fields. To improve the situation, we describe a method for assembling a database of relevant research relating to vegetated strips undertaken in boreo-temperate farming systems (arable, pasture, horticulture, orchards and viticulture). Methods: We will search 13 bibliographic databases, 1 search engine and 37 websites for stakeholder organisations using a predefined and tested search string that focuses on a comprehensive list of vegetated strip synonyms. Non-English language searches in Danish, Finnish, German, Spanish, and Swedish will also be undertaken using a web-based search engine. We will screen search results at title, abstract and full text levels, recording the number of studies deemed non-relevant (with reasons at full text). A systematic map database that displays the meta-data (i.e. descriptive summary information about settings and methods) of relevant studies will be produced following full text assessment. The systematic map database will be displayed as a web-based geographical information system (GIS). The nature and extent of the evidence base will be discussed

    Transcriptome sequencing of an ecologically important graminivorous sawfly:a resource for marker development

    No full text
    Sawfly larvae (Hymenoptera: Symphyta) are an important, highly nutritious, invertebrate food source for farmland birds. Reduced numbers of farmland invertebrates are a possible factor contributing to the observed declines in many farmland bird populations associated with post-1950s intensification of agriculture. To date, studies on sawfly populations have been census-based and, therefore, the genetic factors underlying their declines are unknown. We have produced the first genetic resource for any sawfly species in the form of a de novo transcriptome assembly comprising 18,539 contiguous sequences (contigs) and 260 singletons. The assembly was sequenced using 454 pyrosequencing technology and produced 1,284 microsatellite markers for the common farmland sawfly Dolerus aeneus, which may also be useful in other closely-related species. These markers will facilitate monitoring of changes in genetic diversity and gene flow in sawfly populations therefore helping to predict extinction risk.</p
    corecore