95 research outputs found

    Near-Complete Genome Sequences of Several New Norovirus Genogroup II Genotypes.

    Get PDF
    We report here the near-complete genome sequences of 13 norovirus strains detected in stool samples from patients with acute gastroenteritis from Bangladesh, Ecuador, Guatemala, Peru, Nicaragua, and the United States that are classified into one existing (genotype II.22 [GII.22]), 3 novel (GII.23, GII.24 and GII.25), and 3 tentative novel (GII.NA1, GII.NA2, and GII.NA3) genotypes

    Broad Surveys of DNA Viral Diversity Obtained through Viral Metagenomics of Mosquitoes

    Get PDF
    Viruses are the most abundant and diverse genetic entities on Earth; however, broad surveys of viral diversity are hindered by the lack of a universal assay for viruses and the inability to sample a sufficient number of individual hosts. This study utilized vector-enabled metagenomics (VEM) to provide a snapshot of the diversity of DNA viruses present in three mosquito samples from San Diego, California. The majority of the sequences were novel, suggesting that the viral community in mosquitoes, as well as the animal and plant hosts they feed on, is highly diverse and largely uncharacterized. Each mosquito sample contained a distinct viral community. The mosquito viromes contained sequences related to a broad range of animal, plant, insect and bacterial viruses. Animal viruses identified included anelloviruses, circoviruses, herpesviruses, poxviruses, and papillomaviruses, which mosquitoes may have obtained from vertebrate hosts during blood feeding. Notably, sequences related to human papillomaviruses were identified in one of the mosquito samples. Sequences similar to plant viruses were identified in all mosquito viromes, which were potentially acquired through feeding on plant nectar. Numerous bacteriophages and insect viruses were also detected, including a novel densovirus likely infecting Culex erythrothorax. Through sampling insect vectors, VEM enables broad survey of viral diversity and has significantly increased our knowledge of the DNA viruses present in mosquitoes

    Exploring the Diversity of Plant DNA Viruses and Their Satellites Using Vector-Enabled Metagenomics on Whiteflies

    Get PDF
    Current knowledge of plant virus diversity is biased towards agents of visible and economically important diseases. Less is known about viruses that have not caused major diseases in crops, or viruses from native vegetation, which are a reservoir of biodiversity that can contribute to viral emergence. Discovery of these plant viruses is hindered by the traditional approach of sampling individual symptomatic plants. Since many damaging plant viruses are transmitted by insect vectors, we have developed “vector-enabled metagenomics” (VEM) to investigate the diversity of plant viruses. VEM involves sampling of insect vectors (in this case, whiteflies) from plants, followed by purification of viral particles and metagenomic sequencing. The VEM approach exploits the natural ability of highly mobile adult whiteflies to integrate viruses from many plants over time and space, and leverages the capability of metagenomics for discovering novel viruses. This study utilized VEM to describe the DNA viral community from whiteflies (Bemisia tabaci) collected from two important agricultural regions in Florida, USA. VEM successfully characterized the active and abundant viruses that produce disease symptoms in crops, as well as the less abundant viruses infecting adjacent native vegetation. PCR assays designed from the metagenomic sequences enabled the complete sequencing of four novel begomovirus genome components, as well as the first discovery of plant virus satellites in North America. One of the novel begomoviruses was subsequently identified in symptomatic Chenopodium ambrosiodes from the same field site, validating VEM as an effective method for proactive monitoring of plant viruses without a priori knowledge of the pathogens. This study demonstrates the power of VEM for describing the circulating viral community in a given region, which will enhance our understanding of plant viral diversity, and facilitate emerging plant virus surveillance and management of viral diseases

    Metagenomic analysis of the turkey gut RNA virus community

    Get PDF
    Viral enteric disease is an ongoing economic burden to poultry producers worldwide, and despite considerable research, no single virus has emerged as a likely causative agent and target for prevention and control efforts. Historically, electron microscopy has been used to identify suspect viruses, with many small, round viruses eluding classification based solely on morphology. National and regional surveys using molecular diagnostics have revealed that suspect viruses continuously circulate in United States poultry, with many viruses appearing concomitantly and in healthy birds. High-throughput nucleic acid pyrosequencing is a powerful diagnostic technology capable of determining the full genomic repertoire present in a complex environmental sample. We utilized the Roche/454 Life Sciences GS-FLX platform to compile an RNA virus metagenome from turkey flocks experiencing enteric disease. This approach yielded numerous sequences homologous to viruses in the BLAST nr protein database, many of which have not been described in turkeys. Our analysis of this turkey gut RNA metagenome focuses in particular on the turkey-origin members of the Picornavirales, the Caliciviridae, and the turkey Picobirnaviruses

    High diversity of picornaviruses in rats from different continents revealed by deep sequencing

    Get PDF
    Outbreaks of zoonotic diseases in humans and livestock are not uncommon, and an important component in containment of such emerging viral diseases is rapid and reliable diagnostics. Such methods are often PCR-based and hence require the availability of sequence data from the pathogen. Rattus norvegicus (R. norvegicus) is a known reservoir for important zoonotic pathogens. Transmission may be direct via contact with the animal, for example, through exposure to its faecal matter, or indirectly mediated by arthropod vectors. Here we investigated the viral content in rat faecal matter (n=29) collected from two continents by analyzing 2.2 billion next-generation sequencing reads derived from both DNA and RNA. Among other virus families, we found sequences from members of the Picornaviridae to be abundant in the microbiome of all the samples. Here we describe the diversity of the picornavirus-like contigs including near-full-length genomes closely related to the Boone cardiovirus and Theiler's encephalomyelitis virus. From this study, we conclude that picornaviruses within R. norvegicus are more diverse than previously recognized. The virome of R. norvegicus should be investigated further to assess the full potential for zoonotic virus transmission

    Contributions of biogenic material to the atmospheric ice-nucleating particle population in North Western Europe

    Get PDF
    A minute fraction of atmospheric particles exert a disproportionate effect on the phase of mixed-phase clouds by acting as ice-nucleating particles (INPs). To understand the effects of these particles on weather and climate, both now and into the future, we must first develop a quantitative understanding of the major INP sources worldwide. Previous work has demonstrated that aerosols such as desert dusts are globally important INPs, but the role of biogenic INPs is unclear, with conflicting evidence for their importance. Here, we show that at a temperate site all INPs active above −18 °C at concentrations >0.1 L−1 are destroyed on heating, consistent with these INPs being of biological origin. Furthermore, we show that a global model of desert dust INPs dramatically underestimates the measured INP concentrations, but is consistent with the thermally-stable component. Notably, the heat sensitive INPs are active at temperatures where shallow cloud layers in Northern Europe are frequently observed to glaciate. Hence, we suggest that biogenic material is important for primary ice production in this region. The prevalence of heat sensitive, most likely biogenic, INPs in this region highlights that, as a community, we need to quantify the sources and transport of these particles as well as determine their atmospheric abundance across the globe and at cloud altitudes

    Prise en charge des fractures fermées supra-condyliennes déplacées de l’humérus de l’enfant vues tardivement

    No full text
    De Janvier 2004 à Décembre 2009, dix cas de fractures fermées supra-condyliennes déplacées de l’humérus de l’enfant vues tardivement (J2-J12), ont été colligées et traitées chez des enfants âgés de 0 à 15 ans dans le Service de Chirurgie Pédiatrique de l’Hôpital Gynéco-Obstétrique et Pédiatrique deYaoundé (HGOPY). L’âge moyen des patients était de 5,2 ans avec des extrêmes allant de 3 à 9 ans. Les types lésionnels étaient dominés par le stade IV de Lagrange-Rigault (ou type III de Gartland et Wilkins) avec 7 cas. L’abord chirurgical était au premier plan dans 6 cas utilisant une voie postérieure. Les résultats thérapeutiques évalués selon les critères de Flynn avec un recul de 12 mois étaient satisfaisants dans 9 cas parmi lesquels 6 résultats excellents. Les auteurs préconisent un abord chirurgical d’emblée dans ces formes vues tardivement et recommandent la voie postérieure et une ostéosynthèse adaptée à l’âge de l’enfant, en particulier l’embrochage en croix
    corecore