1,474 research outputs found
Quick returns and night work as predictors of sleep quality, fatigue, work–family balance and satisfaction with work hours
<p>Quick returns (intervals of <11 h between the end of one shift and the start of the next) are associated with short sleeps and fatigue on the subsequent shift. Recent evidence suggests that shift workers regard quick returns as being more problematic than night work. The current study explored quick returns and night work in terms of their impact on sleep, unwinding, recovery, exhaustion, satisfaction with work hours and work–family interference. Data from the 2006 cohort of Swedish nursing students within the national Longitudinal Analysis of Nursing Education (LANE) study were analysed (<i>N</i> = 1459). Respondents completed a questionnaire prior to graduation (response rate 69.2%) and 3 years after graduation (65.9%). The analyses examined associations between frequency of quick returns and night work and measures taken in year three, while adjusting for confounding factors (in year three and prior graduation). Frequency of quick returns was a significant predictor of poor sleep quality, short sleeps, unwinding, exhaustion, satisfaction with work hours and work-to-family interference, with higher frequency predicting more negative outcomes. Quick returns did not predict recovery after rest days. Frequency of night work did not predict any of the outcomes. In conclusion, quick returns were an important determinant of sleep, recovery and wellbeing, whereas night work did not show such an association.</p
A MIQE-Compliant Real-Time PCR Assay for Aspergillus Detection
PMCID: PMC3393739This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny
The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors
Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing
Wide-field imaging surveys such as the Dark Energy Survey (DES) rely on
coarse measurements of spectral energy distributions in a few filters to
estimate the redshift distribution of source galaxies. In this regime, sample
variance, shot noise, and selection effects limit the attainable accuracy of
redshift calibration and thus of cosmological constraints. We present a new
method to combine wide-field, few-filter measurements with catalogs from deep
fields with additional filters and sufficiently low photometric noise to break
degeneracies in photometric redshifts. The multi-band deep field is used as an
intermediary between wide-field observations and accurate redshifts, greatly
reducing sample variance, shot noise, and selection effects. Our implementation
of the method uses self-organizing maps to group galaxies into phenotypes based
on their observed fluxes, and is tested using a mock DES catalog created from
N-body simulations. It yields a typical uncertainty on the mean redshift in
each of five tomographic bins for an idealized simulation of the DES Year 3
weak-lensing tomographic analysis of , which is a
60% improvement compared to the Year 1 analysis. Although the implementation of
the method is tailored to DES, its formalism can be applied to other large
photometric surveys with a similar observing strategy.Comment: 24 pages, 11 figures; matches version accepted to MNRA
Small tropical forest trees have a greater capacity to adjust carbon metabolism to long-term drought than large canopy trees
This is the final version. Available on open access from Wiley via the DOI in this recordThe response of small understory trees to long-term drought is vital in determining the future composition, carbon stocks and dynamics of tropical forests. Long-term drought is, however, also likely to expose understory trees to increased light availability driven by drought-induced mortality. Relatively little is known about the potential for understory trees to adjust their physiology to both decreasing water and increasing light availability. We analysed data on maximum photosynthetic capacity (Jmax , Vcmax ), leaf respiration (Rleaf ), leaf mass per area (LMA), leaf thickness and leaf nitrogen and phosphorus concentrations from 66 small trees across 12 common genera at the world's longest running tropical rainfall exclusion experiment and compared responses to those from 61 surviving canopy trees. Small trees increased Jmax , Vcmax , Rleaf and LMA (71%, 29%, 32%, 15% respectively) in response to the drought treatment, but leaf thickness and leaf nutrient concentrations did not change. Small trees were significantly more responsive than large canopy trees to the drought treatment, suggesting greater phenotypic plasticity and resilience to prolonged drought, although differences among taxa were observed. Our results highlight that small tropical trees have greater capacity to respond to ecosystem level changes and have the potential to regenerate resilient forests following future droughts. This article is protected by copyright. All rights reserved.Australian Research Council (ARC)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorEuropean Union FP7‐AmazalertFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)MicrosoftNatural Environment Research Council (NERC)Royal Society of Biolog
- …