642 research outputs found

    Detection of regulator genes and eQTLs in gene networks

    Full text link
    Genetic differences between individuals associated to quantitative phenotypic traits, including disease states, are usually found in non-coding genomic regions. These genetic variants are often also associated to differences in expression levels of nearby genes (they are "expression quantitative trait loci" or eQTLs for short) and presumably play a gene regulatory role, affecting the status of molecular networks of interacting genes, proteins and metabolites. Computational systems biology approaches to reconstruct causal gene networks from large-scale omics data have therefore become essential to understand the structure of networks controlled by eQTLs together with other regulatory genes, and to generate detailed hypotheses about the molecular mechanisms that lead from genotype to phenotype. Here we review the main analytical methods and softwares to identify eQTLs and their associated genes, to reconstruct co-expression networks and modules, to reconstruct causal Bayesian gene and module networks, and to validate predicted networks in silico.Comment: minor revision with typos corrected; review article; 24 pages, 2 figure

    Advances in Relative Deprivation Theory and Research

    Full text link
    © 2015 Springer Science+Business Media New York The focus of this special issue is relative deprivation (RD): the judgment that one or one’s group is worse off compared to some standard accompanied by feelings of anger and resentment. This collection of seven papers demonstrates the range of the new thinking and research about RD, and they include data from an impressive variety of participants—including Canadians (both French- and English-speakers), Dutch, the Maoris of New Zealand, Mongols, Singaporeans, and South Africans (both Blacks and Whites). These seven papers show that if RD, and its counterpart, relative gratification, are defined carefully, at the right level of analysis and employed within larger theoretical models, the concept offers invaluable insight to how people respond to often dramatic changes in their objective circumstances

    Evolution of Competitive Ability: An Adaptation Speed vs. Accuracy Tradeoff Rooted in Gene Network Size

    Get PDF
    Ecologists have increasingly come to understand that evolutionary change on short time-scales can alter ecological dynamics (and vice-versa), and this idea is being incorporated into community ecology research programs. Previous research has suggested that the size and topology of the gene network underlying a quantitative trait should constrain or facilitate adaptation and thereby alter population dynamics. Here, I consider a scenario in which two species with different genetic architectures compete and evolve in fluctuating environments. An important trade-off emerges between adaptive accuracy and adaptive speed, driven by the size of the gene network underlying the ecologically-critical trait and the rate of environmental change. Smaller, scale-free networks confer a competitive advantage in rapidly-changing environments, but larger networks permit increased adaptive accuracy when environmental change is sufficiently slow to allow a species time to adapt. As the differences in network characteristics increase, the time-to-resolution of competition decreases. These results augment and refine previous conclusions about the ecological implications of the genetic architecture of quantitative traits, emphasizing a role of adaptive accuracy. Along with previous work, in particular that considering the role of gene network connectivity, these results provide a set of expectations for what we may observe as the field of ecological genomics develops

    Multicenter evaluation of a lateral-flow device test for diagnosing invasive pulmonary aspergillosis in ICU patients

    Get PDF
    Introduction: The incidence of invasive pulmonary aspergillosis (IPA) in intensive care unit (ICU) patients is increasing, and early diagnosis of the disease and treatment with antifungal drugs is critical for patient survival. Serum biomarker tests for IPA typically give false-negative results in non-neutropenic patients, and galactomannan (GM) detection, the preferred diagnostic test for IPA using bronchoalveolar lavage (BAL), is often not readily available. Novel approaches to IPA detection in ICU patients are needed. In this multicenter study, we evaluated the performance of an Aspergillus lateral-flow device (LFD) test for BAL IPA detection in critically ill patients. Methods: A total of 149 BAL samples from 133 ICU patients were included in this semiprospective study. Participating centers were the medical university hospitals of Graz, Vienna and Innsbruck in Austria and the University Hospital of Mannheim, Germany. Fungal infections were classified according to modified European Organization for Research and Treatment of Cancer/Mycoses Study Group criteria. Results: Two patients (four BALs) had proven IPA, fourteen patients (sixteen BALs) had probable IPA, twenty patients (twenty-one BALs) had possible IPA and ninety-seven patients (one hundred eight BALs) did not fulfill IPA criteria. Sensitivity, specificity, negative predictive value, positive predictive value and diagnostic odds ratios for diagnosing proven and probable IPA using LFD tests of BAL were 80%, 81%, 96%, 44% and 17.6, respectively. Fungal BAL culture exhibited a sensitivity of 50% and a specificity of 85%. Conclusion: LFD tests of BAL showed promising results for IPA diagnosis in ICU patients. Furthermore, the LFD test can be performed easily and provides rapid results. Therefore, it may be a reliable alternative for IPA diagnosis in ICU patients if GM results are not rapidly available. Trial registration: ClinicalTrials.gov NCT02058316. Registered 20 January 2014

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The effect of a comprehensive lifestyle intervention on cardiovascular risk factors in pharmacologically treated patients with stable cardiovascular disease compared to usual care: a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The additional benefit of lifestyle interventions in patients receiving cardioprotective drug treatment to improve cardiovascular risk profile is not fully established.</p> <p>The objective was to evaluate the effectiveness of a target-driven multidisciplinary structured lifestyle intervention programme of 6 months duration aimed at maximum reduction of cardiovascular risk factors in patients with cardiovascular disease (CVD) compared with usual care.</p> <p>Methods</p> <p>A single centre, two arm, parallel group randomised controlled trial was performed. Patients with stable established CVD and at least one lifestyle-related risk factor were recruited from the vascular and cardiology outpatient departments of the university hospital. Blocked randomisation was used to allocate patients to the intervention (n = 71) or control group (n = 75) using an on-site computer system combined with allocations in computer-generated tables of random numbers kept in a locked computer file. The intervention group received the comprehensive lifestyle intervention offered in a specialised outpatient clinic in addition to usual care. The control group continued to receive usual care. Outcome measures were the lifestyle-related cardiovascular risk factors: smoking, physical activity, physical fitness, diet, blood pressure, plasma total/HDL/LDL cholesterol concentrations, BMI, waist circumference, and changes in medication.</p> <p>Results</p> <p>The intervention led to increased physical activity/fitness levels and an improved cardiovascular risk factor profile (reduced BMI and waist circumference). In this setting, cardiovascular risk management for blood pressure and lipid levels by prophylactic treatment for CVD in usual care was already close to optimal as reflected in baseline levels. There was no significant improvement in any other risk factor.</p> <p>Conclusions</p> <p>Even in CVD patients receiving good clinical care and using cardioprotective drug treatment, a comprehensive lifestyle intervention had a beneficial effect on some cardiovascular risk factors. In the present era of cardiovascular therapy and with the increasing numbers of overweight and physically inactive patients, this study confirms the importance of risk factor control through lifestyle modification as a supplement to more intensified drug treatment in patients with CVD.</p> <p>Trial registration</p> <p>ISRCTN69776211 at <url>http://www.controlled-trials.com</url></p

    Smaller Gene Networks Permit Longer Persistence in Fast-Changing Environments

    Get PDF
    The environments in which organisms live and reproduce are rarely static, and as the environment changes, populations must evolve so that phenotypes match the challenges presented. The quantitative traits that map to environmental variables are underlain by hundreds or thousands of interacting genes whose allele frequencies and epistatic relationships must change appropriately for adaptation to occur. Extending an earlier model in which individuals possess an ecologically-critical trait encoded by gene networks of 16 to 256 genes and random or scale-free topology, I test the hypothesis that smaller, scale-free networks permit longer persistence times in a constantly-changing environment. Genetic architecture interacting with the rate of environmental change accounts for 78% of the variance in trait heritability and 66% of the variance in population persistence times. When the rate of environmental change is high, the relationship between network size and heritability is apparent, with smaller and scale-free networks conferring a distinct advantage for persistence time. However, when the rate of environmental change is very slow, the relationship between network size and heritability disappears and populations persist the duration of the simulations, without regard to genetic architecture. These results provide a link between genes and population dynamics that may be tested as the -omics and bioinformatics fields mature, and as we are able to determine the genetic basis of ecologically-relevant quantitative traits

    The contrasting role of technology as both supportive and hindering in the everyday lives of people with mild cognitive deficits: a focus group study

    Get PDF
    Background: It is well known that people with mild cognitive deficits face challenges when performing complex everyday activities, and that the use of technology has become increasingly interwoven with everyday activities. However, less is known of how technology might be involved, either as a support or hindrance, in different areas of everyday life and of the environments where challenges appear. The aim of this study was to investigate the areas of concern where persons with cognitive deficits meet challenges in everyday life, in what environments these challenges appear and how technology might be involved as part of the challenge and/or the solution to the challenge. Methods: Data were gathered through four focus group interviews with participants that live with cognitive deficits or cohabit with a person with cognitive deficits, plus health professionals and researchers in the field. Data were transcribed, coded and categorized, and finally synthesized to trace out the involvement of technology. Results: Five areas of concern in everyday life were identified as offering challenges to persons with cognitive deficits: A) Managing personal finances, B) Getting around, C) Meeting family and friends, D) Engaging with culture and media and, E) Doing everyday chores. Findings showed that the involvement of technology in everyday activities was often contrastive. It could be hindering and evoke stress, or it could bring about feelings of control; that is, being a part of the solution. The involvement of technology was especially obvious in challenges linked to Managing personal finances, which is a crucial necessity in many everyday activities. In contrast, technology was least obviously involved in the area Socializing with family and friends. Conclusions: The findings imply that technology used for orientation and managing finances, often used outside home, would benefit from being further developed in order to be more supportive; i.e. accessible and usable. To make a positive change for many people, the ideas of inclusive design fit well for this purpose and would contribute to an age-friendly society

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore