60 research outputs found

    Investigating the design space of smartwatches combining physical rotary inputs

    Get PDF
    Watches benefit from a long design history. Designers and engineers have successfully built devices using rotary physical inputs such as crowns, bezels, and wheels, separately or combined. Smart watch designers have explored the use of some of these inputs for interactions. However, a systematic exploration of their combinations has yet to be done. We investigate the design space of interactions with multiple rotary inputs through a three stages exploration. (1) We build upon observations of a collection of 113 traditional or electronic watches to propose a typology of physical rotary inputs for watches. (2) We conduct two focus groups to explore combination of physical rotary inputs. (3) We then build upon the output of these focus groups to design a low fidelity prototype, and further discuss the potential and challenges of rotary inputs combinations during a third focus group

    Horticulture Research

    Get PDF
    Grafting is an ancient method that has been intensively used for the clonal propagation of vegetables and woody trees. Despite its importance in agriculture the physiological and molecular mechanisms underlying phenotypic changes of plants following grafting are still poorly understood. In the present study, we analyse the populations of small RNAs in homo and heterografts and take advantage of the sequence differences in the genomes of heterograft partners to analyse the possible exchange of small RNAs. We demonstrate that the type of grafting per se dramatically influences the small RNA populations independently of genotypes but also show genotype specific effects. In addition, we demonstrate that bilateral exchanges of small RNAs, mainly short interfering RNAs, may occur in heterograft with the preferential transfer of small RNAs from the scion to the rootstock. Altogether, the results suggest that small RNAs may have an important role in the phenotype modifications observed in heterografts

    Epigenetics: an innovative lever for grapevine breeding in times of climatic changes

    Get PDF
    Climate change imposes numerous threats to viticulture. Different strategies have been developed to mitigate these effects that range from innovative vineyard management methods and precision viticulture to the breeding of new varieties and rootstocks better adapted to environmental challenges. Epigenetics refer to heritable changes in genome functioning that are not mediated by DNA sequence variations. The recent discovery that epigenetic memories can mediate acclimation and adaptation of plants to their environment now provides new levers for plant improvement facing climate changes without significant impact on the genetic information. This can be mediated either by using the epigenetic memories of stresses and/ or by creating epigenetic diversity in the form of new epialleles without changing the genetic information. Indeed, grapevine is a perennial grafted clonally propagated plant, and as such, presents epigenetic specificities. These specificities require adapting strategies that have already been developed in model plants but also offer opportunities to explore how epigenetic memories and diversity can be a major source of rapid adaptation to the environment for plants bearing similar properties. Among these strategies, both annual and trans-annual plant priming with different types of elicitors might provide efficient ways to better face (a)biotic stresses. The use of epigenetic exchanges between scion and rootstocks and/or the creation of non-targeted epigenetic variations at a genome-wide scale, or targeted using epigenetic editing, may provide innovative and promising avenues for grapevine improvement to face challenges imposed by climate changes. © This article is published under the Creative Commons licence (CC BY 4.0)

    Zebularine, a DNA Methylation Inhibitor, Activates Anthocyanin Accumulation in Grapevine Cells

    Get PDF
    Through its role in the regulation of gene expression, DNA methylation can participate in the control of specialized metabolite production. We have investigated the link between DNA methylation and anthocyanin accumulation in grapevine using the hypomethylating drug, zebularine and Gamay Teinturier cell suspensions. In this model, zebularine increased anthocyanin accumulation in the light, and induced its production in the dark. To unravel the underlying mechanisms, cell transcriptome, metabolic content, and DNA methylation were analyzed. The up-regulation of stress-related genes, as well as a decrease in cell viability, revealed that zebularine affected cell integrity. Concomitantly, the global DNA methylation level was only slightly decreased in the light and not modified in the dark. However, locus-specific analyses demonstrated a decrease in DNA methylation at a few selected loci, including a CACTA DNA transposon and a small region upstream from the UFGT gene, coding for the UDP glucose:flavonoid-3-O-glucosyltransferase, known to be critical for anthocyanin biosynthesis. Moreover, this decrease was correlated with an increase in UFGT expression and in anthocyanin content. In conclusion, our data suggest that UFGT expression could be regulated through DNA methylation in Gamay Teinturier, although the functional link between changes in DNA methylation and UFGT transcription still needs to be demonstrated

    A DEMETER-like DNA demethylase protein governs tomato fruit ripening

    Get PDF
    In plants, genomic DNA methylation which contributes to development and stress responses can be actively removed by DEMETER-like DNA demethylases (DML). Indeed, in Arabidopsis DMLs are important for maternal imprinting and endosperm demethylation, but only few studies demonstrate the developmental roles of active DNA demethylation conclusively in this plant. Here we show a direct cause and effect relationship between active DNA demethylation mainly mediated by the tomato DML, SlDML2, and fruit ripening; an important developmental process unique to plants. RNAi SlDML2 knock-down results in ripening inhibition via hypermethylation and repression of the expression of genes encoding ripening transcription factors and rate-limiting enzymes of key biochemical processes such as carotenoid synthesis. Our data demonstrate that active DNA demethylation is central to the control of ripening in tomat

    Adv. bot. res.

    No full text
    Grafting is a technic that allows combining the root system from one plant (rootstock) with the shoot of another plant (scion), with the aim to improve the plant agronomical characteristics. Several steps are required for a successful grafting interaction that involves the formation of a callus followed by the differentiation of vascular tissues that connect the rootstock to the scion. When successful, the rootstock-scion interaction results in a complex exchange of signals between the partners eventually leading to phenotypic variations. Several studies have now shown that in addition to nutritional and hormonal signals epigenetic regulations may also play an important role during the establishment of a successful graft interaction, and contribute to the numerous phenotypic consequences of rootstock-scion interactions. Here we summarize the most recent data indicating that both DNA methylation and siRNAs exchanges are essential components of the epigenetic dialogue between the graft partners, and could be the basis of strategies aiming at generating rootstock and scion phenotypic diversity in plants including those which are mainly clonally propagated
    • …
    corecore