28 research outputs found

    Properdin inhibition ameliorates hepatic ischemia/reperfusion injury without interfering with liver regeneration in mice

    Get PDF
    Hepatic ischemia/reperfusion injury (IRI) often causes serious complications in liver surgeries, including transplantation. Complement activation seems to be involved in hepatic IRI; however, no complement-targeted intervention has been clinically applied. We investigated the therapeutic potential of Properdin-targeted complement regulation in hepatic IRI. Male wild-type mice (B10D2/nSn) were exposed to 90-minute partial hepatic IRI to the left and median lobes with either monoclonal anti-Properdin-antibody (Ab) or control-immunoglobulin (IgG) administration. Since the complement system is closely involved in liver regeneration, the influence of anti-Properdin-Ab on liver regeneration was also evaluated in a mouse model of 70% partial hepatectomy. Anti-Properdin-Ab significantly reduced serum transaminases and histopathological damages at 2 and 6 hours after reperfusion (P <0.001, respectively). These improvements at 2 hours was accompanied by significant reductions in CD41+ platelet aggregation (P =0.010) and ssDNA+ cells (P <0.001), indicating significant amelioration in hepatic microcirculation and apoptosis, respectively. Characteristically, F4/80+ cells representing macrophages, mainly Kupffer cells, were maintained by anti-Properdin-Ab (P <0.001). Western blot showed decreased phosphorylation of only Erk1/2 among MAPKs (P =0.004). After 6 hours of reperfusion, anti-Properdin-Ab significantly attenuated the release of HMGB-1, which provokes the release of proinflammatory cytokines/chemokines (P =0.002). Infiltration of CD11b+ and Ly6-G+ cells, representing infiltrating macrophages and neutrophils, respectively, were significantly alleviated by anti-Properdin-Ab (both P <0.001). Notably, anti-Properdin-Ab did not affect remnant liver weight and BrdU+ cells at 48 hours after 70% partial hepatectomy (P =0.13 and 0.31, respectively). In conclusion, Properdin inhibition significantly ameliorates hepatic IRI without interfering with liver regeneration

    The impact of human leukocyte antigen mismatch on recipient outcomes in living‐donor liver transplantation

    Get PDF
    Donor–recipient human leukocyte antigen (HLA) compatibility has not been considered to significantly affect liver transplantation (LT) outcomes; however, its significance in living-donor LT (LDLT), which is mostly performed between blood relatives, remains unclear. This retrospective cohort study included 1954 LDLTs at our institution (1990–2020). The primary and secondary endpoints were recipient survival and the incidence of T cell–mediated rejection (TCMR) after LDLT, respectively, according to the number of HLA mismatches at all five loci: HLA-A, HLA-B, HLA-C, HLA-DR, and HLA-DQ. Subgroup analyses were also performed in between-siblings that characteristically have widely distributed 0–10 HLA mismatches. A total of 1304 cases of primary LDLTs were finally enrolled, including 631 adults (recipient age at LT ≥18 years) and 673 children (<18 years). In adult-to-adult LDLT, the more HLA mismatches at each locus, the significantly worse the recipient survival was (p = 0.03, 0.01, 0.03, 0.001, and <0.001 for HLA-A, HLA-B, HLA-C, HLA-DR, and HLA-DQ, respectively). This trend was more pronounced when multiple loci were combined (all p < 0.001 for A + B + DR, A + B + C, DR + DQ, and A + B + C + DR + DQ). Notably, a total of three or more HLA-B + DR mismatches was an independent risk factor for both TCMR (hazard ratio [HR] 2.66, 95% confidence interval [CI] 1.21–5.87; p = 0.02) and recipient survival (HR 2.44, 95% CI 1.11–5.35; p = 0.03) in between-siblings. By contrast, HLA mismatch did not affect pediatric LDLT outcomes at any locus or in any combinations; however, it should be noted that all donor–recipient relationships are parent-to-child that characteristically possesses one or less HLA mismatch at each locus and maximally five or less mismatches in total. In conclusion, HLA mismatch significantly affects not only TCMR development but also recipient survival in adult LDLT, but not in children

    Randomised phase II trial of mFOLFOX6 plus bevacizumab versus mFOLFOX6 plus cetuximab as first-line treatment for colorectal liver metastasis (ATOM trial)

    Get PDF
    BackgroundChemotherapy with biologics followed by liver surgery improves the resection rate and survival of patients with colorectal liver metastasis (CRLM). However, no prospective study has compared the outcomes of chemotherapy with bevacizumab (BEV) versus cetuximab (CET).MethodsThe ATOM study is the first randomised trial comparing BEV and CET for initially unresectable CRLM. Patients were randomly assigned in a 1:1 ratio to receive mFOLFOX6 plus either BEV or CET. The primary endpoint was progression-free survival (PFS).ResultsBetween May 2013 and April 2016, 122 patients were enrolled. Median PFS was 11.5 months (95% CI 9.2–13.3 months) in the BEV group and 14.8 months (95% CI 9.7–17.3 months) in the CET group (hazard ratio 0.803; P = 0.33). Patients with a smaller-number but larger-sized metastases did better in the CET group. In the BEV and CET groups, the response rates were 68.4% and 84.7% and the resection rates were 56.1% and 49.2%, respectively.ConclusionAlthough CET achieved a better response rate than BEV for patients with a small number of large liver metastases, both biologics had similar efficacy regarding liver resection and acceptable safety profiles. To achieve optimal PFS, biologics should be selected in accordance with patient conditions.Trial registrationThis trial is registered at ClinicalTrials.gov (number NCT01836653), and UMIN Clinical Trials Registry (UMIN-CTR number UMIN000010209)

    Anti-complement 5 antibody ameliorates antibody-mediated rejection after liver transplantation in rats

    Get PDF
    Antibody-mediated rejection (AMR) remains a refractory rejection after donor-specific antibody (DSA)-positive or blood-type incompatible liver transplantation (LT), even in the era of pre-transplant rituximab desensitization. This is due to the lack of not only effective post-transplant treatments but also robust animal models to develop/validate new interventions. Orthotopic LT from male Dark Agouti (DA) to male Lewis (LEW) rats was used to develop a rat LT-AMR model. LEW were pre-sensitized by a preceding skin transplantation from DA 4–6 weeks before LT (Group-PS), while sham procedure was performed in non-sensitized controls (Group-NS). Tacrolimus was daily administered until post-transplant day (PTD)-7 or sacrifice to suppress cellular rejections. Using this model, we validated the efficacy of anti-C5 antibody (Anti-C5) for LT-AMR. Group-PS+Anti-C5 received Anti-C5 intravenously on PTD-0 and -3. Group-PS showed increased anti-donor (DA) antibody-titers (P &lt;0.001) and more C4d deposition in transplanted livers than in Group-NS (P &lt;0.001). Alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bile acid (TBA), and total bilirubin (T-Bil) were all significantly higher in Group-PS than in Group-NS (all P &lt;0.01). Thrombocytopenia (P &lt;0.01), coagulopathies (PT-INR, P =0.04), and histopathological deterioration (C4d+h-score, P &lt;0.001) were also confirmed in Group-PS. Anti-C5 administration significantly lowered anti-DA IgG (P &lt;0.05), resulting in decreased ALP, TBA, and T-Bil on PTD-7 than in Group-PS (all P &lt;0.01). Histopathological improvement was also confirmed on PTD-1, -3, and -7 (all P &lt;0.001). Of the 9,543 genes analyzed by RNA sequencing, 575 genes were upregulated in LT-AMR (Group-PS vs. Group-NS). Of these, 6 were directly associated with the complement cascades. In particular, Ptx3, Tfpi2, and C1qtnf6 were specific to the classical pathway. Volcano plot analysis identified 22 genes that were downregulated by Anti-C5 treatment (Group-PS+Anti-C5 vs. Group-PS). Of these, Anti-C5 significantly down-regulated Nfkb2, Ripk2, Birc3, and Map3k1, the key genes that were amplified in LT-AMR. Notably, just two doses of Anti-C5 only on PTD-0 and -3 significantly improved biliary injury and liver fibrosis up to PTD-100, leading to better long-term animal survival (P =0.02). We newly developed a rat model of LT-AMR that meets all the Banff diagnostic criteria and demonstrated the efficacy of Anti-C5 antibody for LT-AMR

    Developmental Changes in Conditioned Taste Aversion in Lymnaea stagnalis

    Get PDF
    As the first step to study relationships between development and learning in the molluscan central nervous system,we examined developmental changes in acquisition and retention of a conditioned taste aversion (CTA) in the pond snail, Lymnaea stagnalis. We found that snails developed ability of a CTA as a long-term memory through three critical stages. Embryos in veliconcha started to respond to appetitive sucrose at the first critical stage. This response was in good agreement with morphological observations that embryos at this developmental stage seemed to be physically ready to eat. However, they could not associate this appetitive stimulus (conditioned stimulus: CS) with an aversive stimulus of KCI (unconditioned stimulus: UCS). At the second critical stage, embryos just before hatching acquired the CTA, but the conditioned response did not persist. Through this stage, they may acquire learning ability to safely seek out food in an external environment. At the third critical stage, immature snails with a 10 mm shell could use a long-term memory to maintain the conditioned response. This memory persisted for at least a month, showing that now they are able to maintain a long-term memory so that they can safely eat a variety of food when they cover wide territory to search for a mate. The present findings indicate that the development of learning ability in snails, which secures acquisition of better survival ability, is coincident with the major changes in their life cycle

    Conserved Mechanism of Negative Gene Regulation by Extracellular Calcium Parathyroid Hormone Gene versus Atrial

    No full text
    We found that a negative calcium-responsive element (nCaRE) originally reported in the human parathyroid hormone gene is conserved among several genes. The results of the present study show that expression of one of the genes, the rat atrial natriuretic polypeptide gene, was negatively regulated in the heart by extracellular calcium by using an in vivo infusion system. Moreover, transfection of the cultured cells revealed that this DNA element conferred negative regulation by extracellular calcium on the reporter gene. It is suggested that there is a gene family whose expression is negatively regulated by extracellular calcium through this conserved DNA motif, nCaRE. (J. Clin. Invest. 1992.89:1268-1273.) Key words: negative calcium-responsive element * in vivo infusion system * transfection * gene family * nuclear protei
    corecore