961 research outputs found
Erbium in a-Si:H
A review of the current status of research on Er 3+ doped hydrogenated amorphous silicon (a-Si:H) is presented. Er has been introduced in a-Si:H and a-SiOx:H by ion implantation, co-sputtering and PECVD. In all cases, the characteristic atomic-like intra-4f 4I13/2 -> 4I15/2 photoluminescence emission at ~ 1.54 µm is observed at room temperature. The Er 3+ luminescence probability is determined by the local neighborhood of the ions. Therefore, local probes like EXAFS and Mössbauer spectroscopy have yielded very important information. A discussion of excitation processes, electroluminescence, and electronic doping effects, is also presented.616622Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
Impact of Si nanocrystals in a-SiOx<Er> in C-Band emission for applications in resonators structures
Si nanocrystals (Si-NC) in a-SiOx were created by high temperature
annealing. Si-NC samples have large emission in a broadband region, 700nm to
1000nm. Annealing temperature, annealing time, substrate type, and erbium
concentration is studied to allow emission at 1550 nm forsamples with erbium.
Emission in the C-Band region is largely reduced by the presence of Si-NC. This
reduction may be due to less efficient energy transfer processes from the
nanocrystals than from the amorphous matrix to the Er3+ ions, perhaps due to
the formation of more centro-symmetric Er3+ sites at the nanocrystal surfaces
or to very different optimal erbium concentrations between amorphous and
crystallized samples.Comment: 3 pages, 4 figure
Full-field strain reconstruction using uniaxial strain measurements: Application to damage detection
This work investigates the inverse problem of reconstructing the continuous displacement field of a structure using a spatially distributed set of discrete uniaxial strain data. The proposed technique is based on the inverse Finite Element Method (iFEM), which has been demonstrated to be suitable for full-field displacement, and subsequently strain, reconstruction in beam and plate structures using discrete or continuous surface strain measurements. The iFEM uses a variationally based approach to displacement reconstruction, where an error functional is discretized using a set of finite elements. The effects of position and orientation of uniaxial strain measurements on the iFEM results are investigated, and the use of certain strain smoothing strategies for improving reconstruction accuracy is discussed. Reconstruction performance using uniaxial strain data is examined numerically using the problem of a thin plate with an internal crack. The results obtained highlight that strain field reconstruction using the proposed strategy can provide useful information regarding the presence, position, and orientation of damage on the plate
Environment of Er in a-Si:H: co-sputtering versus ion implantation
We report a comparative Extended X-Ray Fine Structure (EXAFS) study of Er in a-Si:H prepared by Er implantation in a-Si:H and by co-sputtering undergoing the same cumulative annealing processes. It was found that the Er environment in as-implanted samples is formed by Si atoms, which are replaced by oxygen under annealing. In the co-sputtered samples, the initial low coordination oxygen environment evolves under thermal treatment to an Er2O3 -like neighborhood.756759Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
Resonant structures based on amorphous silicon sub-oxide doped with Er3+ with silicon nanoclusters for an efficient emission at 1550 nm
We present a resonant approach to enhance 1550nm emission efficiency of
amorphous silicon sub-oxide doped with Er3+ (a-SiOx) layers with silicon
nanoclusters (Si-NC). Two distinct techniques were combined to provide a
structure that allowed increasing approximately 12x the 1550nm emission. First,
layers of SiO2 were obtained by conventional wet oxidation and a-SiOx
matrix was deposited by reactive RF co-sputtering. Secondly, an extra pump
channel (4I15/2 to 4I9/2) of Er3+ was created due to Si-NC formation on the
same a-SiOx matrix via a hard annealing at 1150 C. The SiO2 and the
a-SiOx thicknesses were designed to support resonances near the pumping
wavelength (~500nm), near the Si-NC emission (~800nm) and near the a-SiOx
emission (~1550nm) enhancing the optical pumping process.Comment: 14 pages, 4 figures, in submissio
Ideating IDNA: Lessons and Limitations From Leeches in Legacy Collections
Indirect methods for conducting faunal inventories present great promise, and genomic inventories derived from environmental sources (eDNA) are improving. Invertebrate ingested DNA (iDNA) from terrestrial leeches in the family Haemadipsidae has shown potential for surveying vertebrates and biodiversity monitoring in protected areas. Here we present an initial, and critical, evaluation of the limitations and biases of current iDNA protocols for biodiversity monitoring using both standard and NGS barcoding approaches. Key findings include the need for taxon relevant multi-locus markers and reference databases. In particular, the limitations of available reference databases have profound potential to mislead and bias eDNA and iDNA results if not critically interpreted. Nevertheless, there is great potential for recovery of amplifiable DNA from gut contents of invertebrate museum specimens which may reveal both temporal patterns and cryptic diversity in protected areas with increased efficiency. Our analyses of ingested DNA (iDNA) from both freshly stored and previously collected (legacy) samples of terrestrial leeches successfully identified vertebrates from Myanmar, Australia and Madagascar and indicate the potential to characterize microbial communities, pathogen diversity and interactions at low cost
Stellar ArAr reactions and their effect on light neutron-rich nuclide synthesis
The ArAr ( = 35 d) and
ArAr (269 y) reactions were studied for the first time
with a quasi-Maxwellian ( keV) neutron flux for Maxwellian Average
Cross Section (MACS) measurements at stellar energies. Gas samples were
irradiated at the high-intensity Soreq applied research accelerator
facility-liquid-lithium target neutron source and the Ar/Ar and
Ar/Ar ratios in the activated samples were determined by
accelerator mass spectrometry at the ATLAS facility (Argonne National
Laboratory). The Ar activity was also measured by low-level counting at
the University of Bern. Experimental MACS of Ar and Ar, corrected
to the standard 30 keV thermal energy, are 1.9(3) mb and 1.3(2) mb,
respectively, differing from the theoretical and evaluated values published to
date by up to an order of magnitude. The neutron capture cross sections of
Ar are relevant to the stellar nucleosynthesis of light neutron-rich
nuclides; the two experimental values are shown to affect the calculated mass
fraction of nuclides in the region A=36-48 during the weak -process. The new
production cross sections have implications also for the use of Ar and
Ar as environmental tracers in the atmosphere and hydrosphere.Comment: 18 pages + Supp. Mat. (13 pages) Accepted for publication in Phys.
Rev. Let
Viral Retinitis following Intraocular or Periocular Corticosteroid Administration: A Case Series and Comprehensive Review of the Literature.
Abstract Purpose: To describe viral retinitis following intravitreal and periocular corticosteroid administration. Methods: Retrospective case series and comprehensive literature review. Results: We analyzed 5 unreported and 25 previously published cases of viral retinitis following local corticosteroid administration. Causes of retinitis included 23 CMV (76.7%), 5 HSV (16.7%), and 1 each VZV and unspecified (3.3%). Two of 22 tested patients (9.1%) were HIV positive. Twenty-one of 30 (70.0%) cases followed one or more intravitreal injections of triamcinolone acetonide (TA), 4 (13.3%) after one or more posterior sub-Tenon injections of TA, 3 (10.0%) after placement of a 0.59-mg fluocinolone acetonide implant (Retisert), and 1 (3.3%) each after an anterior subconjunctival injection of TA (together with IVTA), an anterior chamber injection, and an anterior sub-Tenon injection. Mean time from most recent corticosteroid administration to development of retinitis was 4.2 months (median 3.8; range 0.25-13.0). Twelve patients (40.0%) had type II diabetes mellitus. Treatments used included systemic antiviral agents (26/30, 86.7%), intravitreal antiviral injections (20/30, 66.7%), and ganciclovir intravitreal implants (4/30, 13.3%). Conclusions: Viral retinitis may develop or reactivate following intraocular or periocular corticosteroid administration. Average time to development of retinitis was 4 months, and CMV was the most frequently observed agent. Diabetes was a frequent co-morbidity and several patients with uveitis who developed retinitis were also receiving systemic immunosuppressive therapy
Correlated theory of triplet photoinduced absorption in phenylene-vinylene chains
In this paper we present results of large-scale correlated calculations of
triplet photoinduced absorption (PA) spectrum of oligomers of
poly-(para)phenylenevinylene (PPV) containing up to five phenyl rings. In
particular, the high-energy features in the triplet PA spectrum of oligo-PPVs
are the focus of this study, which, so far, have not been investigated
theoretically, or experimentally. The calculations were performed using the
Pariser-Parr-Pople (PPP) model Hamiltonian, and many-body effects were taken
into account by means of multi-reference singles-doubles configuration
interaction procedure (MRSDCI), without neglecting any molecular orbitals. The
computed triplet PA spectrum of oligo-PPVs exhibits rich structure consisting
of alternating peaks of high and low intensities. The predicted higher energy
features of the triplet spectrum can be tested in future experiments.
Additionally, theoretical estimates of exciton binding energy are also
presented.Comment: To appear in Phys. Rev.
- …